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A B S T R A C T

Reinforcement learning guides food decisions, yet how the brain learns from taste in humans is not fully un-
derstood. Existing research examines reinforcement learning from taste using passive condition paradigms, but
response-dependent instrumental conditioning better reflects natural eating behavior. Here, we examined brain
response during a taste-motivated reinforcement learning task and how measures of task-based network struc-
ture were related to behavioral outcomes. During a functional MRI scan, 85 participants completed a prob-
abilistic selection task with feedback via sweet taste or bitter taste. Whole brain response and functional network
topology measures, including identification of communities and community segregation, were examined during
choice, sweet taste, and bitter taste conditions. Relative to the bitter taste, sweet taste was associated with
increased whole brain response in the hippocampus, oral somatosensory cortex, and orbitofrontal cortex. Sweet
taste was also related to differential community assignment of the ventromedial prefrontal cortex and ven-
trolateral prefrontal cortex compared to bitter taste. During choice, increasing segregation of a community
containing the amygdala, hippocampus, and right fusiform gyrus was associated with increased sensitivity to
punishment on the task's posttest. Further, normal BMI was associated with differential community structure
compared to overweight and obese BMI, where high BMI reflected increased connectivity of visual regions.
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Together, results demonstrate that network topology of learning and memory regions during choice is related to
avoiding a bitter taste, and that BMI is associated with increased connectivity of area involved in processing
external stimuli. Network organization and topology provide unique insight into individual differences in brain
response to instrumental conditioning via taste reinforcers.

1. Introduction

Overweight and obesity affects over two thirds of American adults
[1], making it a major preventable risk factor for a number of diseases
including type 2 diabetes [2–4], certain types of cancer [5,6], and
cardiovascular disease [7–9]. A variety of individual, social, and en-
vironmental factors contribute to the development of overweight and
obesity, but eating behavior is considered a key point of study for un-
derstanding the etiology of obesity [10]. Eating behavior is the product
of repeated choice outcome pairings and the food selected provides the
reinforcement. When making a choice about what to eat, information
from internal states [11], food preferences [12], dietary goals [13], and
the environment [14,15] are integrated in the brain, which selects the
best action to perform a motivated action (e.g. satiating hunger, sa-
tisfying a craving, or following a diet). These decisions are represented
by increased brain response in regions across the prefrontal and cin-
gulate cortices [16]. Regions include the medial orbitofrontal cortex
(mOFC), which encodes the value of an outcome [17], and the anterior
cingulate cortex (ACC), a region that assesses the cost of actions [18].
Decision making also involves the ventromedial prefrontal cortex
(vmPFC), which weighs the value of an outcome against the costs as-
sociated with the action to assign overall value to actions [19,20] and
the dorsolateral prefrontal cortex (dlPFC), a region that modulates
computations [20].

Once a choice is made, consuming the food selected provides initial
information about the reinforcing properties of foods via the generation
of flavor perceptions, varying from delicious to disgusting. Sweetness,
an indicator of the potential presence of energy [21], is generally found
to increase pleasantness, whereas bitterness indicates the potential
presence of a toxin [22] and, at least initially, promotes dislike. Both
sweet and bitter taste therefore serve as important sensory signals to
promote or prevent future consummatory behavior [23]. Post-oral
signals are generated following consumption and update acceptability
based on beneficial or adverse ingestive consequences [16]. This pro-
cess of repeated food choice, consumption, and reinforcement can be
operationalized as instrumental conditioning [24]. Following the in-
strumental conditioning framework: individuals learn to associate a cue
(food image or logo) with a given response (e.g. choosing or avoiding
the food), and the subsequent reinforcement from consuming the food.
This process recruits aforementioned decision-making brain regions,
and integrates signal from areas involved in motivation and taste pro-
cessing [16]. Neural response to taste is well characterized - palatable

taste evokes response in the striatum, insula, dorsal ACC, OFC, and
amygdala [25,26], while bitter taste also activate the OFC and amyg-
dala [27,28].

Typical analyses of functional neuroimaging data provide informa-
tion about how blood oxygen-level dependent (BOLD) response in the
brain changes in response to a given stimulus, but does not capture how
areas the brain interact in response to the stimulus. Cognition and be-
havior are the product of a coordinated flow of information between
brain areas, and network-based approached provide important detail on
the functional organization of the brain during response to a stimulus
[29]. Functional connectivity is undirected, and can exists between
spatially distinct regions, theoretically reflecting synchronous response.
For example, functional connectivity is increased between the ventral
striatum, insula, amygdala and hippocampus during reinforcement via
monetary gain [30]. In response to a palatable taste reinforcer, func-
tional connectivity of the OFC and insula is increased [31]. Network-
based analyses of BOLD response apply graph-theory to functional
connectivity and provide information about the architecture of brain
networks, and can be applied to identify differences in the functional
organization of brain response across conditions or individuals [32,33].
Regions of the brain are treated as “nodes” of a graph and the corre-
lations between nodes (brain regions) as “edges” [34]. Metrics include
the organization of brain regions into functional subnetworks, called
“communities,” that are theorized to perform specialized task (mod-
ularity); the density of connections of a region and its neighbors (seg-
regation); the centrality of a region in paths between other area (hub-
ness), and the ratio of with-community connections to out-community
connections (integration) (Figure 1) [35]. During reinforcement and
motor learning, the communities reorganize, such that the communities
become more segregated with learning, supporting the development of
specialized function within segregated subnetworks [36,37] Network
organization of the basal ganglia is particularly important in this pro-
cess [38]. To date, brain network organization during food reinforce-
ment has not been tested.

The extant studies on brain response during food reinforcement
primarily use passive, Pavlovian conditioning tasks, where no choice is
involved. Pavlovian conditioning and instrumental conditioning via
secondary reinforcers are associated with differences in BOLD response
[39], so it stands to reason that brain response during taste-mediated
instrumental conditioning may diverge from prior response to passive
conditioning tasks. Additionally, tasks assessing brain response during
instrumental conditioning primarily use secondary reinforcers such as

Figure 1. Graph Theory Measures of Functional Network Organization
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money or written feedback. A primary reinforcer, such as food, may
have more saliency [40] and could contribute to different network or-
ganization and dynamics over learning [41]. Thus, to address gaps in
our understanding of brain response and network structure during in-
strumental conditioning, this study tested brain response during com-
pletion of a response-dependent conditioning task with taste re-
inforcement. We adapted a canonical probabilistic learning task, which
measures instrumental learning from reward and punishment [42], by
using beverages as reinforcers. The primary aim of the study was to
identify whole brain response and explore network organization using a
priori regions of interest (ROI) based analysis during the task, specifi-
cally in the choice, sweet taste, and bitter taste conditions. We hy-
pothesized that choice would be associated with BOLD response in the
medial OFC, vmPFC, and dlPFC, that sweet taste would be associated
with response in the insula, dorsal ACC, OFC, and amygdala response,
and bitter taste would be associated with response in the OFC and
amygdala. For network analyses, we hypothesized that choice will be
associated with a fewer number of communities than reward and
punishment, reflecting more synchronization across the brain during

choice. In addition to these aims, we also tested if measures of network
segregation, hubness, and integration were connected to behavioral
outcomes including task performance and preference ratings of the
sweet and bitter beverages. We hypothesized that increased community
segregation across conditions would be associated with improved task
performance as measured by posttest accuracy.

2. Materials and methods

2.1. Sample

Ninety (n=90) male and female participants were recruited from
the Chapel Hill, North Carolina area to complete a cross sectional study.
Eligibility criteria included: 1) age 18-28 years, 2) body mass index
between (BMI) 20.0 kg/m2 and 32.0 kg/m2. Exclusion criteria were: 1)
contraindications of MRI (e.g. metal implants, piercings, pregnancy), 2)
current smoking, 3) self-reported current or past diagnoses of an eating
disorder, 4) chronic illness or medication requirement that could affect
diet, 5) diagnosis of a major psychological condition (bipolar, schizo-
phrenia, major affective disorder), and 6) allergy or intolerance to any
study foods. The Institutional Review Board of the University of North
Carolina at Chapel Hill approved all methods and study participants
gave written consent before the start of testing. For this analysis, three
(n=3) participants who ended scanning early and two (n=2) partici-
pants who had <29 trials (representing 56% of possible trials) of re-
ward or punishment were excluded. The resulting analytic sample was
n=85 participants.

2.2. Measures

Participants completed all measures in a 2.5 hour visit at the
University of North Carolina at Chapel Hill's Gillings School of Global
Public Health and Biomedical Research Imaging Center (BRIC).

Table 1
Reinforcer Composition and Selection

Flavor kcala Sugar (g)a Quinine
(mg)a

Malto-dextrin
(g)a

Selected as
Reinforcer

Sweet 1 104.6 14.2 – 20.9 11 (12.9%)
Sweet 2 105.4 21.2 – 10.5 17 (20.0%)
Sweet 3 105.4 28.2 – 5.3 20 (23.5%)
Sweet 4 105.4 35.1 – 0.0 37 (43.5%)
Bitter 1 105.3 7.0 12.0 7.0 5 (5.9%)
Bitter 2 105.3 6.8 24.0 7.1 11 (12.9%)
Bitter 3 105.3 6.3 48.0 7.2 19 (22.4%
Bitter 4 105.3 5.5 72.0 7.4 50 (58.8%)

a Values reported for 300mL portion of each beverage

Figure 2. Appetitive PST Task and Performance
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Participants were instructed to fast for four hours before the visit to
standardize time since last meal. Visits took place within the hours of
7:00 and 20:00. Participants were instructed to fast for at least 4 hours
before their assessment.

2.2.1. Anthropometrics & Demographics
Height (to the nearest 0.5 cm) and weight (to the nearest 0.1 kg)

were measured with a wall-mounted stadiometer and a calibrated scale
by trained research staff. BMI was calculated as kg/m2. Demographics
including age, race, and ethnicity were assessed via self-report.

2.2.2. Beverages and Preference Assessment
Beverages used in the instrumental conditioning task as reward and

punishment were selected based on participant ratings via a taste test.
During the taste test, participants were instructed to taste and rate
20mL samples of 4 sweet and 4 bitter beverages. The eight beverages
were made from a base of water (940mL), unsweetened Kool-Aid®
Cherry powder (4.5g) and simple syrup (60 mL). Simple syrup or a
quinine solution were added to the beverages to create different levels
of sweetness or bitterness. The composition of the beverages can be
seen in Table 1. The beverages were calorically-matched with the ad-
dition of maltodextrin, a soluble, neutral-tasting carbohydrate powder.
Levels of sweetness and bitterness were selected from previous studies
of taste preference [43]. Beverages were rated in pleasantness, desire to
consume, sweetness, bitterness and intensity on VAS anchored at -100
and 100 (sample anchors were stated as ‘most imaginable’ and ‘least
imaginable’ with 0 identified as neutral). All sweet beverages were
sampled in a random order, then participants ranked the beverages
from most pleasant to least pleasant, with the highest ranked beverage
selected as the reward for the probabilistic selection task (see 2.2.4).
The same process was then completed with the bitter beverages, and
the lowest ranked beverage was selected as the punishment.

2.2.3. Neuroimaging Methods
Anatomical and functional imaging data were collected in a Siemens

Prisma 3T scanner (Siemens Medical Solutions, Munich, Germany) at
UNC's Biomedical Research Imaging Center (BRIC). Visual stimuli were
presented with a digital projector/reverse screen display system.
Tastants were delivered using programmable syringe pumps (Braintree
Scientific BS-8000, Brain-Tree, MA) operated through a program
written in PsychoPy [44], available at: https://github.com/niblunc/
bevel_task) to ensure consistent volume, rate, and timing of taste de-
livery. A set of tubing attached to the scanner bed was placed into the
participants' mouths and delivered the tastes. Button press response was
collected via a 5-button response pad (Current Designs Pyka Response
Pad, Philadelphia, PA) held in the participant's right hand. Blood-
oxygen-level-dependent (BOLD) signal was collected during functional
runs under the following scanning parameters: TR = 2000 ms,
TE = 20ms, flip angle = 80°, with a spatial resolution of 3.0mm.
Images were collected with whole-brain coverage; 32 4mm slices (in-
terleaved acquisition) were acquired along the AC-PC transverse, ob-
lique plane as determined by the midsagittal section. Anatomical scans
were acquired with a TR/TE of 2100ms/2.4ms, flip angle of 15°, TI of
1100ms, matrix size of 256 × 256, FOV of 22cm, and slice thickness of
1mm.

2.2.4. Appetitive Probabilistic Selection Task
Participants completed a modified, taste-based version of the

Probabilistic Selection Task [42], measuring response to reward and
punishment (Figure 2). The task was composed of training and posttest
phases. In the training phase, participants were presented with pairs of
novel shapes, and asked to select the “correct” shape to receive a sweet
taste. Participants were instructed that when they chose “incorrectly”,
they would receive a bitter taste. Feedback was probabilistic; each
shape was reinforced at a prespecified probability. Three pairs were
presented during the scan: 1) AB pair (A: 80% correct; B: 20% correct);

2) CD pair (C: 70% correct, D: 30% correct); 3) EF pair (E: 60% correct,
F: 40% correct). Instances where participants selected the higher
probability shape but received a bitter taste or where participants se-
lected the lower probability shape but received a sweet taste were
classified as “prediction errors”. Pairs were presented in a random,
intermixed order. Taste feedback (3mL of sweet taste or 3mL of bitter
taste) was delivered over 5 seconds in the absence of any visual stimuli
then followed by a 1mL rinse of a tasteless solution made to mimic the
taste of saliva, delivered over 2 seconds. The next trial proceeded fol-
lowing a 3-7 second variable gap, during which a fixation cross was
shown. In total, participants completed 104 training trials over four
runs, each 6 minutes and 44 seconds in length. Following the training
phase during the fMRI scan, participants completed the posttest phase
of the task outside of the scanner. During the posttest, participants were
presented with one shape from the AB set (A: 80% correct, B: 20%
correct) paired with shapes from the other two sets and asked to select
the shape that is more likely to be “correct”. The proportion of trials in
which the participant selects the A shape is considered their sensitivity
to sweet taste, and the proportion of trials in which the participant
avoids the B shape is considered their sensitivity to bitter taste.

2.3. Appetitive Probabilistic Selection Task Performance

Statistical analyses of task data were carried out using the R sta-
tistical software package (Version 3.5.1, R Foundation for Statistical
Computing, Vienna, Austria). PST task performance was calculated as
the percent of correct choices, defined as choosing the shape with the
higher likelihood of being correct in each pair. The percent of AB trials
where A was selected, the percent of CD trials where C was selected,
and the percent of EF trials where E was selected were calculated over
the 4 training blocks, representing participant's training accuracy
(Figure 2B). Repeated measures ANOVA was implemented using the
‘lme4’ package (v 1.1) to test for significant change in task performance
by pair over runs, accounting for intra-individual correlation. Posttest
accuracy was calculated as the percent of correct choices, defined by
selecting the A shape (sensitivity to sweet taste), and avoiding the B
shape (sensitivity to bitter taste). Posttest performance was correlated
with brain response as a categorical regressor (See 2.7). For categorical
analyses, participants were categorized as ‘learners’ if their posttest
accuracy was above chance (50%), and as ‘non-learners’ if their posttest
accuracy was below chance.

To test if posttest performance reflected learned preferences rather
than probabilistic learning, the absolute value of the differences be-
tween sensitivity to sweet taste and sensitivity to bitter taste scores
from chance accuracy (50%) was calculated to represent learned pre-
ference. Learned preference scores were correlated with brain response
as a continues regressor (See Supplemental Materials).

2.4. FMRI Preprocessing

Neuroimaging data were preprocessed using the fMRIPrep pipeline
[45]. In brief, DICOMS were converted to the Brain Imaging Data
Structure (BIDS file structure) [46], then preprocessed using fMRIPrep.
FMRIPrep preprocessing included skull stripping using Advanced Nor-
malization Tools (ANTs); tissue segmentation using FSL's Automated
Segmentation Tool (FAST); and spatial normalization to Montreal
Neurological Institute (MNI) 152-Asymmetrical space using ANTs’ re-
gistration option. FreeSurfer was used to reconstruct surfaces from
structural images. Functional images were then motion corrected using
FSL's MCFLIRT, corrected for fieldmap distortion, and spatially
smoothed using a 6mm Gaussian full width half maximum isotropic
kernel. In FSL, final preprocessing included adjusting for autocorrela-
tion and highpass filtering and adjusting for nuisance regressors, in-
cluding the 6 motion parameters, their derivatives, and high motion
time points (>0.9).
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2.4. FMRI Group-Level Main Effects Analysis

Neuroimaging analyses were primarily completed in FSL (FMRIB
Software Library, www.fmrib.ox.ac.uk/fsl) Individual and group level
analyses were carried out in FSL's FMRI Expert Analysis Tool (FEAT;
[47,48]. At the individual level, within subject models assessed brain
response to 1) choice via button press > baseline; 2) reward via sweet
taste > rinse; and 3) punishment via bitter taste > rinse. Individual
level contrasts also included reward > punishment; and punishment >
reward. Motion parameters were included as nuisance regressors at the
individual level.

At the group level, the analysis followed a one sample F-test model
to identify whole brain response that was significantly different within
the full sample. Main effect models were examined for the following
contrasts: 1) choice > baseline (fixation cross); 2) sweet taste > tas-
teless solution; 3) bitter taste > tasteless solution; 4) sweet taste >
bitter taste; and 5) bitter taste > sweet taste. Multiple comparisons
were controlled for by using the threshold free cluster enhancement,
nonparametric thresholding algorithm in FSL's Randomise (n permu-
tations = 5000) resulting in a family-wise error rate corrected sig-
nificance threshold of pFWE < 0.05 [49]. Localization of significant
clusters were determined using Mango's MNI atlas tool.

2.5. Betaseries and Functional Connectivity

A betaseries regression analysis was used to measure condition-
specific functional connectivity in the sample [50]. In each participant's
preprocessed data, separate general linear models were set with a re-
gressors modeling each event and another regressor modeling all other
events of the same condition to derive condition-wise whole brain beta
values for each event [51]. Conditions included: 1) choice and button
press; 2) reward; 3) punishment. The resulting beta images were con-
catenated by condition and run, producing a timeseries of beta values,
or betaseries for each condition and for each participant. Then, average
signal was extracted from each participant's betaseries in 28 regions of
interest (ROIs) drawn from the Big Brain 300 parcellation, a functional
parcellation based on the Power atlas [52], with improved coverage of
subcortical regions [53]. ROIs were selected based on regions reported
as responsive to taste stimuli, taste administration, and reinforcement
learning [54–58] (Table 4). The resulting betaseries arrays represented
average parameter estimates in each ROI for each event in a given
condition. Matrices were the same size (28 × 104) in the choice con-
dition. Because reinforcement varied, reward and punishment matrices
varied in length from 28 × 29 to 28 × 64. Betaseries correlation ma-
trices for the 28 ROIs were extracted, resulting in 28 × 28 betaseries
connectivity matrix for each condition, for each participant. For
methods and results of significance testing of functional connectivity
(ROI – ROI correlation), see Supplemental Materials.

2.6. Graph construction & network topology

To examine network topology during choice, reward, and punish-
ment, betaseries correlation were used as the basis of network graphs.
The 28 ROIs were treated as nodes, and correlations between ROIs were
treated as graph edges. For graph analysis, only positive correlations
were included, since network topology measures are not optimized for
negative correlations [59]. To generate graphs, participants’ correlation
matrices were fed into ‘networkX’ package (version 2.3) [60] and
‘bctpy’ package (version 0.5.1, https://pypi.org/project/bctpy/), im-
plemented in Jupyter Notebook [61], running Python 3.7.5 (Python
Software Foundation).

Within each participant's graph, modularity, or the degree to which
the network may be subdivided into such clearly delineated groups
called communities, was calculated using the Louvain algorithm [62]
‘python-louvain’ package (version 0.13). Modularity was calculated on
the median graph, rather than the mean graph, to account for skewness.

Then the median graph was partitioned into the identified commu-
nities, and the weighted edges between communities were calculated to
examine the connectivity between communities.

Measures of network topology were also computed for each node
within participant's graphs, then metrics were averaged across all nodes
in the communities identified at the group level, producing average
community parameters for networks associated with choice, reward,
and punishment. Three parameters were calculated: (1) Weighted
clustering coefficient, or the geometric average of the subgraph edge
weights, was used to assess segregation via networkX's ‘cluster’ algo-
rithm [63]. Higher clustering coefficient values suggest greater se-
paration of a node from nodes outside its module. (2) Weighted be-
tweenness centrality which measures community hubness by the
fraction of all shortest paths in the network that contain a given node,
and calculated using via networkX's ‘betweenness_centrality’ algo-
rithm [64]. Higher betweenness centrality suggests increased partici-
pation in paths between other nodes, and higher hubness. (3) Partici-
pation coefficient, or the ratio of within-community connections
compared to between-community connections, measures how in-
tegrated a node is within its community and the network. Participation
coefficient was calculated using bctpy's ‘participation_coef’ algorithm
[65]. Participation coefficients closer to 1 are indicative of greater
within-community connectivity, while participation coefficients closer
to 0 represent greater between community connectivity. For each par-
ticipant's graph, clustering coefficient, betweenness centrality, and
participation coefficient was calculated at the node level, then averaged
across communities. All analyses were performed in non-thresholded,
weighted graphs. To visualize modularity and nodal connectivity re-
sults, a mean graph of all conditions was created, then thresholded at
the average edge strength (> 0.30) to display strongest edges.

2.7. Associations between network topology and participant characteristics

To examine differences in network structure associated with parti-
cipant characteristics, we tested for group-based differences in network
organization on three categorical variables: BMI, sex, and posttest
performance. To examine differences in network structure between BMI
groups, sample was separated into normal BMI (n=52; BMI < 25.0 kg/
m2) and overweight/obese BMI (n = 33; BMI > 25.0 kg/m2).
Modularity was then calculated in the mean normal BMI graph and
mean overweight/obese BMI graph. Community organization was
compared between male (n = 42) and female (n = 43) participants,
and participants who scored above 50% on the appetitive PST posttest
(n = 45) and those who scored below 50% (n = 40). For each pair of
groups, differences in community assignment were compared qualita-
tively and quantitatively using the normalized mutual information
(NMI) score ([66], similar methods as [67]). NMI scores range from 0 to
1 with higher scores reflecting more similar community assignment
between groups. To identify empirically meaningful differences in
network organization, we compared observed NMI scores to a dis-
tribution of null NMI scores generated by randomly splitting individual
matrices into null groups and comparing community organization. Null
NMI scores were calculated over 500 permutations to generate a null
distribution of NMI values for each contrast. Observed NMI values that
exceeded one standard deviation of the mean of the null distribution,
were considered a quantitative measure of meaningful differences in
community organization.

Further, we tested for associations between community metrics
(segregation, integration, and hubness) and behavioral outcomes in-
cluding stimuli ratings, the level of sweetness/bitterness and posttest
performance in R statistical software package (version 3.5.1, R
Foundation for Statistical Computing, Vienna, Austria). Tests included
Pearson's product-moment correlation for continuous measures (plea-
santness and desire VAS ratings, posttest sensitivity to reward, posttest
sensitivity to punishment) and one-way analysis of variance (ANOVA)
for categorical measures (sweetness of reward selected and bitterness of
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punishment selected) using the ‘lmer’ function from the ‘lme4’ package
[68]. Significance was considered at multiple-comparisons corrected p-
value threshold < 0.008.

3. Results

3.1. Participant Characteristics

Participants characteristics and performance on the instrumental
conditioning task are summarized in Table 2. The sample was primarily
young, normal-weight adults. The majority of participants identified as
white and non-Hispanic. Just over half of the participants were female.

3.2. Appetitive Probabilistic Selection Task Performance

Out of the 104 training trials in the modified Probabilistic Selection
Task, participants responded to receive reinforcement on an average of
98.1±5.6 trials. About half of those trials were reinforced with the
sweet taste (mean = 49.8±6.0 trials), while participants also received
a high number of bitter taste (mean = 48.4± 5.7 trials). Average ac-
curacy did not increase over course of training (Figure 2B). On the PST
posttest, participants chose shape A on 51.0± 11.0% of trials, re-
presenting their sensitivity to sweet taste (Table 2; Figure 2C). Parti-
cipants avoided shape B on 51.0±9.0% of trials, representing their
sensitivity to bitter taste. The correlation between sensitivity to sweet
taste and bitter taste was low (r = 0.135). Based on posttest perfor-
mance, 45 participants were able to choose shape A and avoid shape B
on over 50% of trials, classifying as ‘learners’, while 40 participants we
classified as ‘non-learners’ as their posttest accuracy was below 50%.
There were no significant correlations between posttest performance
and individual factors such as BMI, age, VAS ratings of the sweet and
bitter tastes, training performance or the percent of prediction error
trials (correlation coefficients (r): 0.002 – 0.201; see Supplemental
Materials for full results), and there were no significant differences
between the ‘learner’ and ‘non-learner’ groups in the individual factors
examined (p's: 0.09 – 0.81; see Supplemental Materials for full results).

3.3. Brain response during choice, sweet taste, and bitter taste

We observed robust main effects during choice via button press,
sweet taste, and bitter taste. During choice via button press, BOLD re-
sponse was observed across the occipital cortex and temporal lobe,
insula, primary motor cortex, as well as anterior cingulate cortex, and
orbitofrontal cortex (Table 3; Figure 3A). In response to sweet taste
(contrasted against rinse), response was found across a number of re-
gions including peaks in the temporal lobe and hippocampus, lateral
occipital cortex, and frontal pole, in addition to response in the insula,
precuneus, thalamus, left dorsolateral prefrontal cortex, amygdala, and
oral somatosensory cortex (Table 3; Figure 3B). In response to bitter
taste (contrasted against rinse), a similar pattern of response to reward
was found, with peaks in the thalamus, oral somatosensory cortex, and
anterior cingulate (Table 3; Figure 3C). When comparing whole-brain
response to sweet taste contrasted against bitter taste (sweet taste >
bitter taste), robust response extended into regions that traditionally
respond to rewarding food stimuli, including response in the oral so-
matosensory cortex, precuneus, and orbitofrontal cortex (Figure 3D).
Sweet taste was also associated with greater response in the hippo-
campus, dorsal anterior cingulate cortex, and caudate. Conversely,
bitter taste contrasted against sweet taste (bitter taste > sweet taste)
was related with increased response in the paracingulate gyrus (Figure
3D).

3.4. Network Organization during Choice, Sweet Taste, and Bitter Taste

Overall community organization is shown in Figure 4. During
choice, ROIs organized into seven communities (Table 4), including a

learning and memory community (1: amygdala, hippocampus, and fu-
siform gyrus), a motivation, motor response and behavioral control
community (2: dorsal striatum, pre/postcentral gyrus, ventromedial
PFC, and ventrolateral PFC) and a visual response and valuation com-
munity (3: medial OFC, intracalcarine cortex, fusiform gyrus). During
sweet taste and bitter taste, ROIs organized into eight and seven com-
munities respectively (Table 4). Overall, community assignment during
bitter taste was similar to sweet taste and choice. However, the ven-
tromedial PFC and ventrolateral PFC were assigned to distinct com-
munities during sweet taste, while during bitter taste, the ROIs were
assigned to community 2 (Table 4, Figure 4).

3.5. Association of Network Topology with Task Performance, BMI and Sex

Differences in community organization between BMI groups were
observed (Figure 5A). During response to sweet taste, ROIs in the bi-
lateral intracalcarine cortex and right fusiform gyrus were organized
into a single community in participants with normal BMI (n=52).
Among participants with an overweight or obese BMI (n=33), the ROIs
were assigned to a larger community including the left fusiform gyrus
and bilateral medial OFC. To test if the observed differences were
quantitatively meaningful, we calculated a normalized mutual in-
formation (NMI) score for the BMI-groups’ community assignment, then
compared it to a distribution of null scores generated from permutation
testing with random group assignment. The observed NMI describing
the differences between BMI groups in community organization during
sweet taste (0.669) was greater than 1 SD lower than null NMI dis-
tribution mean (mean± SD: 0.791± 0.102; Figure 5B), supporting
that the observed differences are not due to random variation in as-
signment.

Segregation of community 1 during choice (amygdala, dorsal
striatum, fusiform gyrus) was significantly associated with sensitivity to
punishment as assessed on the probabilistic selection task posttest
(r = 0.289, t = 2.73, df = 82, p = 0.0077; Figure 5C). Measures of
community segregation, integration, or hubness during sweet taste and
bitter taste relate to posttest performance (%sensitivity to punishment
or %sensitivity to reward) or reinforcer characteristics (ratings of
pleasantness and desire to consume, sugar content, or quinine added)
(p's: 0.016 – 0.99). Differences in community assignment were observed
between posttest accuracy groups as well as between male and female

Table 2
Participant Characteristics and Task Performance (n=85)

Mean± SD Min - Max

Age (years) 21.5± 2.4 18 - 28
BMI (kg/m2) 24.7± 3.2 19.6 - 33.1
Pre-scan Hunger 16.1± 46.1 -100 - 80
Sweet Taste Pleasantness 38.7± 19.1 -32 - 100
Bitter Taste Pleasantness -45.5± 25.8 -96 - 19
Sex Count Percent
Male 42 49.4%
Female 43 50.6%

Race
Black or African American 4 4.7%
Asian or Pacific Islander 19 22.4%
White 51 60.0%
Middle Eastern 2 2.4%
More than one race 5 5.9%
Other or chose not to report 4 4.7%

Ethnicity
Hispanic 10 11.8%
Non-Hispanic 75 88.2%

PST Performance Mean± SD Min - Max
Training Rewards (n) 49.8± 6.0 29 - 63
Training Punishments (n) 48.4± 5.7 31 - 64
Prediction Error Trials (%) 27.8± 4.4 18.4 – 38.2
Posttest Sensitivity to Sweet 51%±10.6% 29.2% - 75.0%
Posttest Sensitivity to Bitter 50.8%±9.3% 29.4% - 83.3%
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participants, but the differences were not meaningfully different from
the null NMI distribution mean, and thus were not considered mean-
ingfully different (Supplemental Materials). Additionally, brain re-
sponse was not associated with learned preference scores (Supple-
mental Materials).

4. Discussion

4.1. Summary

Reinforcement learning from taste is the foundation of dietary
choice, yet few studies have examined how the brain responds to taste
as a primary reinforcer using a response-dependent task. Here, 85
healthy, young adults completed an instrumental conditioning task
[42] to assess whole-brain response and network organization during
choice and reinforcement via sweet tastes and bitter tastes. Our data
suggest that choice and reinforcement via taste are associated with
distinct patterns of brain response and network organization. Further,
we found that BMI was associated with differential network organiza-
tion of regions in the visual cortex, and that clustering of a community
involved in learning and memory during choice was related to im-
proved avoidance of a cue associated with bitter taste. Together, these
results indicate that measures of brain network structure and topology
are associated with individual differences in weight status and ability to
learn from taste.

4.2. Appetitive PST Performance

Diverging from previous iterations of the probabilistic selection task
[42,69], performance on the appetitive probabilistic selection task was
close to chance in our sample. A major difference between the appeti-
tive PST and the original version of the task is the use of sweet and
bitter tasting beverages as feedback. Taste is a primary reinforcer, but

its use has challenges in research application because the motivational
salience of foods change with satiation [70] and habituation to tastes
[71]. Satiation, especially the development of sensory specific satiety,
can decrease the motivational value of foods over time [72,73]. Fur-
ther, habituation decreases operant response to rewards and punish-
ment over exposures [71,74]. Changes to motivation over the course of
the appetitive PST could contribute to the divergence of the present
posttest performance from prior studies using secondary outcomes.
Further, the possibility of habituation to the bitter taste or even the
development of preference for the bitter taste may explain our results.
Exposure increases liking of foods [75] and repeated exposure enhances
the hedonic evaluation of a bitter-flavored beverage [76]. Together,
sensory specific satiety and habituation may change the reward and
punishment associated with sweet and bitter tastes, narrowing the
difference in motivational salience between the two flavors over the
course of training. In the present data posttest scores below chance
(50% choose A and avoid B) could indicate the formation of preference
for shapes associated with the bitter taste. Hedonic valuation of the
stimuli was not assessed at the end of the task, so we are unable to
directly test this interpretation, however we examined the difference in
posttest performance from chance as a proxy of preference for the A or
B shapes. We did not find any association between preference scores
and participant characteristic or brain response to the shapes or ta-
stants. Notably, in prior studies with non-taste outcomes, posttest per-
formance on the PST was decreased in participants with obesity [69]. In
the present sample, posttest performance was weakly negatively related
to BMI, but the effect was not statistically significant. Thus, con-
founding effects of habituation/satiation on posttest performance may
have obscured the relationship between BMI and sensitivity to out-
comes in our sample.

4.3. Brain Response and Network Organization during Appetitive PST

During the appetitive PST training, we observed robust patterns of
brain response across all conditions. During the choice period, in-
cluding a button press in response to the question “which [shape] is
correct’, BOLD response was found in regions relating to these systems.
BOLD response in the visual cortex, precentral gyrus, posterior tem-
poral lobe, hippocampus and caudate, may relate to visual processing,
motor response, language processing [77], working memory [78,79],
and reinforcer expectations respectively [80,81]. While not all hy-
pothesized regions showed response during choice, the observed re-
sponse fits within the current model of instrumental-response in the
brain [82]. Extant research on brain response to taste shows patterns of
response to palatable (high sugar and high fat) tastes consistent with
brain response to the sweet, reward beverage found here [27,83,84].
When reward was compared to punishment, we observed greater BOLD
response in the precuneus, oral somatosensory cortex, and OFC, regions
that all show response to palatable tastes compared to a neutral solution
[85]. Additionally, greater response in caudate was observed, similar to
other studies of palatable taste [86–88]. These results add further evi-
dence to support brain response to palatable taste in the describe re-
gions. When compared to sweet taste, bitter taste was associated with
greater response in the dorsal anterior cingulate cortex (dACC). This
result was unexpected, as we hypothesized that the bitter taste would
be related to BOLD response in the OFC and amygdala. The dACC is
thought to connect midbrain motivational areas to prefrontal control
regions [89], and acts as a ‘controller’, integral for reward based deci-
sion making [90,91] and adaptation [92]. Given its role in updating
response, dACC response during bitter taste receipt may reflect an up-
date to expectations following the bitter taste.

Network organization was examined to further characterize re-
sponse to the task during choice, sweet taste, and bitter taste. The brain
is a complex system, and network approaches provide unique in-
formation about the coordination of brain response to a stimulus and
the function of different communities, or clusters of ROIs [35].

Table 3
Significant BOLD Response to Cues and Reinforcement

Contrast & Regions ka Z pFWE1 Xb Y Z

Choice (AB/CD/EF Stimuli) > Rest
Occipital cortex and temporal lobe
(bilateral)

11594 11.3 <0.001 33 -48 -18

Precentral gyrus (bilateral) 1268 9.3 <0.001 0 15 48
Insula (R) 839 9.3 <0.001 33 27 3
Caudate (L) 144 6.8 <0.001 -9 6 3
Caudate (R) 121 6.4 <0.001 9 9 6
Supramarginal Gyrus (R) 94 5.1 <0.001 60 -42 18
Middle Temporal Gyrus (L) 57 5.1 <0.001 -54 -54 12
Middle Frontal Gyrus (R) 30 4.4 0.006 45 27 24

Sweet Taste > Rinse
Temporal lobe and hippocampus (L) 10032 7.6 <0.001 -30 -36 -9
Lateral occipital cortex (L) 152 4.4 <0.001 -54 -72 33
Frontal Pole (L) 149 4.5 0.011 -15 63 33
Frontal Pole (R) 30 4.9 0.020 6 60 45

Sweet Taste > Rinse
Thalamus (L) 5103 7.0 <0.001 -3 -18 0
Oral Somatosensory cortex (L) 2065 6.3 <0.001 -21 -33 66
Anterior cingulate (L) 230 5.3 0.042 -6 39 -6
Superior frontal gyrus and
paracingulate gyrus (L)

129 5.2 0.009 -9 12 51

Sweet Taste > Bitter Taste
Hippocampus, dorsal ACC, and
temporal lobe

10132 6.4 <0.001 -30 -18 -15

Oral somatosensory cortex (R) 99 5.0 <0.001 54 -6 30
Precentral Gyrus (L) 66 4.4 0.013 -3 -30 78
Orbitofrontal Cortex (R) 39 4.5 <0.001 42 33 -18
Bitter Taste > Sweet Taste
Paracingulate Gyrus 244 5.7 0.029 6 12 48

a P values and cluster size (k) were calculated with FSL Randomise threshold
free cluster enhancement and cluster respectively

b Peak coordinates are in MNI space (mm)
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Community structure reflects functional specialization [35], and the
organization (or member assignments) of communities shed light on the
subprocesses involved in cognition [93]. Across all phases of the task,
we observed highly dimensional brain networks, with eight, nine, and
eight communities identified during choice, sweet taste, and bitter
taste, respectively. Community assignment for about 70% of the regions
examined was conserved in all conditions of the task. Unique commu-
nity assignment was identified for ROIs in the visual cortex and orbi-
tofrontal cortex during choice. In this condition, ROIs in the right fu-
siform gyrus, intracalcarine cortex, and medial OFC organize into the
same community. The medial OFC monitors stimulus-reinforcer

relationships [94]. Its connectivity with visual regions during choice
may represent the incorporation of stimuli perception with reinforcer
value assessment, that could underpin decisions between cues. Unique
community assignment was found for ROIs in the ventromedial and
ventrolateral prefrontal cortex during response to the sweet taste.
During bitter taste, the vmPFC and vlPFC were grouped into a larger
community with the dorsal striatum and pre/postcentral gyrus ROIs,
reflecting connectivity the cortico-striatal loop that is critical for feed-
back-based learning and action updating [95,96]. Conversely, during
sweet taste, this cortico-striatal community reorganized, such that the
vmPFC was grouped with the precuneus, while the vlPFC was assigned

Figure 3. Brain Response During Choice, Sweet Taste, and Bitter Taste
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to its own community. The vmPFC encodes the value of choices and
outcomes [20]. The function of the precuneus is multifaceted, its re-
sponse is related to self-consciousness, pain, and memory [97]. The
vmPFC and precuneus are functionally connected at rest [97,98], and
BOLD response in both regions increases with certainty in a choice
between a desired food image and an undesired food image [99]. In-
creased connectivity of the vmPFC and precuneus during sweet taste
may reflect the positive reinforcement conveyed by taste. Further, the
vlPFC, was organized into its own community assignment during sweet
taste, Dissociation of the vlPFC, which is involved in behavioral reg-
ulation [96] and learning stimulus-response relationships [100], from
the vmPFC and striatum may reflect differences in the coordination of
response to a sweet taste versus a bitter taste.

In consideration of the wide variance in task performance between
individuals, we tested for differences in network organization and to-
pology associated with task performance. While we did not see differ-
ences in network organization between participants who performed
above chance versus below chance on the appetitive PST posttest, we
found that increasing segregation of the amygdala, hippocampus, and
right fusiform gyrus community during choice was significantly asso-
ciated with increased sensitivity to bitter taste, as measured by the PST
posttest. This community represents memory and learning regions

[101,102], and connectivity of the amygdala and hippocampus predicts
behavioral adaptation to positive and negative feedback [101]. In-
creasing segregation of this community reflects stronger within-com-
munity connectivity and dissociation from the rest of the network
[103], and allows for more efficient specialization of communities.
Higher segregation may reflect more efficient communication between
the areas involved in learning, memory, and visual response. This in
turn, could underpin increased sensitivity to the bitter taste as observed
on the posttest.

4.4. Effects of BMI on Task Performance and Network Organization

One factor demonstrated to affect PST task performance is obesity.
Individuals with obesity show insensitivity to negative outcomes on the
PST task [69], and more broadly obesity is related to insensitivity to
negative prediction errors and punishment [104,105]. However, in the
present sample we did not find significant associations between BMI
and posttest performance. When network organization was compared
between BMI groups, we observed differences in network organization
during sweet taste between normal BMI and overweight/obese BMI
groups in bilateral intracalcarine cortex ROIs and the right fusiform
gyrus, where these ROIs were integrated into a broader community to

Figure 4. Network Community Structure during Choice, Reward, and Punishment
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the left fusiform gyrus and medial OFC in the overweight/obese group.
Thus, during sweet taste, network organization among overweight/
obese participants reflect increased connectivity of visual ROIs with the
orbitofrontal cortex during sweet taste. Similarly, Geha et al reported
increased global connectivity of the visual cortex in obesity during
consumption of a palatable milkshake [106]. Further, obesity is asso-
ciated with stronger visual cortex response to food images [107]. Our
results also support the interpretation that elevated BMI may be related
to greater orientation to external stimuli during consumption [106],
which could contribute to excessive intake.

4.5. Limitations

This study has notable strengths and limitations. While our study is
the first to adapt the Probabilistic Selection Task to use a primary taste
reinforcer, we were not able to reliably identify learning in our sample.
While the two tastants were selected to serve as a reward and punish-
ment, the lack of evidence for learning on the posttest suggest that
tastants may not have provided the intended reinforcement during the
training. Because of this, we were not able to account for learning and
expectancy in our analyses of BOLD response and network structure
during training. It is possible that response, especially that of midbrain
ROIs that respond strongly to prediction error [17,108] may be mis-
attributed to response to reward or punishment. Within individuals, this
may not impact overall results because prediction error should be dis-
tributed across sweet taste and bitter taste evenly, but across in-
dividuals this effect may be meaningful, since feedback was rando-
mized, and participants received different numbers of prediction error
trials (e.g. choose correct shape, but received bitter taste). While the
rate of prediction error trials was not correlated with posttest accuracy,
it may have contributed to differences in trial-by-trial brain response.
Future studies of brain response during taste-mediated instrumental
conditioning should aim to increase the number of taste events or in-
clude additional training to improve performance and allow for a
computational model of reinforcement learning to be fit to behavioral
data. Second, graph-theory based network analyses provide unique

information to further characterize brain response during choice, sweet
taste administration, and bitter taste administration. However, these
types of analyses limit the scope of brain regions examined. While the
ROIs selected were drawn from research on reinforcement learning and
taste administration, it is possible that regions meaningful to network
structure were not included in our analytic set. With more trials, future
studies may be able to identify other regions important to network
structure during choice, reward, and punishment. Similarly, we did not
observe any meaningful differences between participants who per-
formed above chance on the posttest and those who performed below
chance. Some unmeasured construct may relate to individual differ-
ences in posttest performance, such as impulsivity [109] or episodic
memory [110]. Finally, this study did not collect hedonic ratings of the
task stimuli following completion of the PST training. Without this data
we are not able to test for changes in the motivational salience of the
sweet taste and bitter taste following training, limiting our ability to
address the possible effects of satiation or habituation to the taste on
posttest performance.

5. Conclusions

How we learn from taste reinforcement is an important driver of
food choices, and provides a window into how food may motivate in-
dividuals to choose palatable foods. Our results are the first to examine
network community structure during completion of an instrumental
conditioning task with response-dependent taste administration. We
found that brain networks during choice, sweet taste and bitter taste are
similar, with key differences in visual cortex areas and prefrontal re-
gions important for value representation and behavioral regulation. We
found that during sweet taste, participants with overweight/obese BMI
showed broader connectivity of visual cortex regions than participants
with normal BMI, suggesting that elevated BMI is related to greater
integration of external stimuli during consumption. Also, segregation of
a community involved in learning and memory was associated with
improved posttest performance, indicating that efficient processing
within this community is associated with an improved ability to avoid

Table 4
Brain Network Communities During Choice, Sweet Taste, and Bitter Taste

Coordinates (mm) Community Assignment Unique Community Assignment
Region x y z Choice Sweet Bitter

Amygdala (L) -20 -2 -22 1 1 1 -
Amygdala (R) 20 -2 -23 1 1 1 -
Dorsal striatum (L) -12 17 -4 2 2 2 -
Dorsal striatum (R) 13 17 -5 2 2 2 -
Fusiform gyrus (L) -33 -37 -16 1 3 3 Choice
Fusiform gyrus (R) 27 -60 -8 3 4 4 Choice
Hippocampus (L) -26 -12 -22 1 1 1 -
Hippocampus (R) 25 -11 -23 1 1 1 -
Insula (L) -36 2 4 5 5 5 -
Insula (R) 38 10 4 5 5 5 -
Intracalcarine cortex (L) -8 -79 7 3 4 4 Choice
Intracalcarine cortex (R) 5 -78 7 3 4 4 Choice
Lateral OFC (L) -30 20 -20 4 4 4 -
Lateral OFC (R) 30 20 -18 4 4 4 -
Medial OFC (L) -14 19 -19 3 3 3 -
Medial OFC (R) 14 16 -17 3 3 3 -
Pre/postcentral gyrus (L) -42 -17 53 2 2 2 -
Pre/postcentral gyrus (R) 40 -20 53 2 2 2 -
Precuneus (L) -7 -59 26 6 6 6 -
Precuneus (R) 13 -62 28 6 6 6 -
Thalamus (L) -14 -20 0 5 5 5 -
Thalamus (R) 14 -20 0 5 5 5 -
Ventral striatum (L) -10 17 7 7 7 7 -
Ventral striatum (R) 10 16 7 7 7 7 -
Ventrolateral PFC (L) -42 46 -1 2 8 2 Sweet
Ventrolateral PFC (R) 43 48 -6 2 8 2 Sweet
Ventromedial PFC (L) -5 43 -8 2 6 2 Sweet
Ventromedial PFC (R) 6 42 -4 2 6 2 Sweet
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bitter tastes. Together, results shed light on the complex interaction of
brain regions responding to taste-based reinforcement, support that
individual differences in connectivity of visual regions and segregation
of learning and memory areas are related to BMI and brain response to
taste.
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