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Abstract 

We used graph theoretical measures to investigate the hypothesis that structural brain 

connectivity constrains the influence of functional connectivity on the relation between age and 

fluid cognition. Across 143 healthy, community-dwelling adults 19-79 years of age, we 

estimated structural network properties from diffusion-weighted imaging (DWI) and functional 

network properties from resting-state functional magnetic resonance imaging (fMRI). We 

confirmed previous reports of age-related decline in the strength and efficiency of structural 

networks, as well as in the connectivity strength within and between structural network modules. 

Functional networks, in contrast, exhibited age-related decline only in system segregation, a 

measure of the distinctiveness among network modules. Aging was associated with decline in a 

composite measure of fluid cognition, particularly tests of executive function. Functional system 

segregation was a significant mediator of age-related decline in executive function. Structural 

network properties did not directly influence the age-related decline in functional system 

segregation. The raw correlational data underlying the graph theoretical measures indicated that  

structural connectivity exerts a limited constraint on age-related decline in functional 

connectivity.  

 

Keywords: graph theory; system segregation; brain connectome; magnetic resonance imaging; 

executive function; statistical mediation 
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1. Introduction  

1.1 Age-related differences in brain connectivity and cognition. Fluid cognitive 

abilities, which depend on the rapid and flexible coordination of attention and memory, decline 

during healthy aging, relative to knowledge- and expertise-based (crystallized) abilities, which 

often exhibit age constancy (Craik and Bialystok, 2006; Kramer et al., 1994; Park et al., 2002; 

Salthouse, 1996). Previous neuroimaging studies with positron emission tomography (PET), 

structural magnetic resonance imaging (MRI), and functional MRI (fMRI) have demonstrated 

that aging is associated with alterations in brain structure and function, including a decrease in 

the integrity of white matter and decrease in the functional connectivity among cortical regions, 

which may contribute to the age-related decline in fluid cognition (Bennett and Madden, 2014; 

Fjell et al., 2016; Fjell and Walhovd, 2010; Grady, 2017; Hedden et al., 2016; Madden et al., 

2017; Ruiz-Rizzo et al., 2019; Salat, 2011). Broadly, both structural connectivity (usually 

assessed from the integrity of the white matter pathways connecting cortical regions) and 

functional connectivity (usually assessed from the correlation of resting-state fMRI time series 

between cortical regions) tend to decrease with increasing age (Damoiseaux, 2017; Ferreira and 

Busatto, 2013; Sala-Llonch et al., 2015). The age-related decline in structural connectivity is 

consistent across studies. However, the functional connectivity between cortical regions may be 

indirect or rely on multiple white matter pathways (Damoiseaux and Greicius, 2009; Honey et 

al., 2009), and as a result, both increases and decreases in functional connectivity with age have 

been observed across selected cortical regions (Betzel et al., 2014; Biswal et al., 2010; Song et 

al., 2014; Tomasi and Volkow, 2012).  

Studies of younger adults suggest that structural connectivity constrains functional 

connectivity, though these studies have focused primarily on the medial prefrontal and posterior 
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cingulate regions comprising the default mode network (Greicius et al., 2009; Hermundstad et 

al., 2013; Honey et al., 2007; Zhu et al., 2014). Networks of structural and functional 

connectivity are not isomorphic, however, and tend to diverge in higher-order association 

cortical regions (Batista-García-Ramó and Fernández-Verdecia, 2018; Mišić et al., 2016; 

Vázquez-Rodríguez et al., 2019). Under the best of circumstances, structural connectivity 

accounts for 50% of the variance in functional connectivity(Suarez et al., 2020). In the first study 

to combine measures of structural and functional connectivity in the context of aging, Andrews-

Hanna et al. (2007) reported age-related decline in functional connectivity strength of default 

mode cortical regions (e.g., posterior cingulate and medial prefrontal regions) and a dorsal 

attention system (e.g., intraparietal sulcus and frontal eye field). Andrews-Hanna and colleagues 

also found that the decline in functional connectivity was associated with declines in both white 

matter integrity and fluid cognition. Later studies have confirmed that structural and functional 

connectivity are statistical mediators of the relation between age and fluid cognition (Chen et al., 

2009; Fjell et al., 2016; Hedden et al., 2016; Li et al., 2020; Madden et al., 2017). 

The relation between age-related effects for structural and functional connectivity, 

however, is less clear. Andrews-Hanna et al. (2007) and Chen et al. (2009) both reported a 

positive relation between functional connectivity and regional white matter integrity (fractional 

anisotropy; FA) for older adults. Zimmerman et al. (2016) proposed that a specific pattern of 

structural-functional connectivity coupling predicted age more reliably than did either form of 

connectivity alone. Fjell et al. (2016) observed that structural connectivity was a better predictor 

of longitudinal decline in executive function than functional connectivity. In contrast, Fjell et al. 

(2017) found that functional connectivity within anatomically defined white matter tracts was not 

consistently higher than functional connectivity to regions outside of the tracts. Further, the 
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cross-sectional age-related trajectories differed for structural and functional connectivity, and 

these measures changed in a largely independent manner across a 3.3 year longitudinal span, 

leading Fjell et al. (2017) to conclude that structural connectivity only weakly constrained the 

age-related differences in functional connectivity. Similarly, Tsang et al. (2017) found that cross-

sectional age-related differences in structural and functional connectivity were unrelated to each 

other.  

1.2. Graph theoretical measures of brain connectivity. As noted previously, structural 

connectivity is typically defined from some microstructural property of cerebral white matter 

pathways, such as FA or the number of white matter streamlines, derived from tractography. In 

contrast, functional connectivity is based on the correlation of fMRI time series, often measured 

during a resting state, obtained either from anatomically or functionally defined cortical regions 

of interest (ROIs), or from the whole brain in voxelwise analyses (e.g., independent component 

analysis; ICA). As a result, however, the variables comprising structural and functional 

connectivity data have qualitatively different measurement properties, which may contribute to 

the inconsistent findings that have been reported. Graph theory (Rubinov and Sporns, 2010; 

Rubinov and Sporns, 2011; Sporns and Betzel, 2016; Sporns et al., 2004; van den Heuvel and 

Sporns, 2013) provides a potentially useful conceptual and measurement framework in which to 

investigate age-related differences in both structural and functional connectivity. In graph theory, 

the brain is viewed as a network of nodes with structural or functional connections (edges) 

between them. Nodes are ROIs that can be defined either anatomically, as a set of cortical and 

subcortical gray matter regions (Desikan et al., 2006; Jao et al., 2013; Tzourio-Mazoyer et al., 

2002), or functionally, as regions with consistent patterns of task-related or resting-state activity 

(Laird et al., 2011; Power et al., 2011; Wig et al., 2014; Yeo et al., 2011). The matrix of all 
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possible connections between pairs of nodes represents the whole-brain network. If a network 

(either structural or functional) is not random, then it will comprise a number of communities, or 

modules, which are distinct sets of nodes that are highly interconnected.  

 To date, MRI findings, derived primarily from younger adults, suggest that brain 

structure and function exhibit characteristically small-world properties, expressed as a limited 

number of modules that have high within-module connectivity, and fewer long-range 

connections across modules (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). These 

small-world properties, especially the presence of modules, are hypothesized to be an 

evolutionary adaptation that maximizes the efficiency of responding to task demands and 

resilience to focal damage (Achard and Bullmore, 2007; Crossley et al., 2013; Mišić and Sporns, 

2016; Wig, 2017). Graph theoretical measures provide a fine-grained characterization of 

different properties of connectivity both within and between modules (Figure 1). In addition to 

the efficiency of information transmission (the number of intervening edges), the strength of 

connectivity can be defined for both structural data (e.g., the number of streamlines between 

nodes) and functional data (e.g., the strength of the correlation between nodes). Further, system 

segregation, defined as the relative preponderance of within-module connections to between-

module connections, reflects the degree to which modules are distinct or differentiated from each 

other.  

/— Insert Figure 1 about here —/ 

 Previous MRI investigations applying graph theoretical measures to age-related 

differences in functional brain connectivity have been concerned primarily with resting-state 

connectivity. Age-related trends in functional network properties are not entirely consistent, but 

findings from several studies suggest that functional connectivity between modules is better 

Jo
urn

al 
Pre-

pro
of



Aging Connectivity  7 

preserved as a function of age than within-module connectivity (Damoiseaux, 2017; Sala-Llonch 

et al., 2015; Wig, 2017). As a result, functional modules become less distinct or separate with 

increasing age, expressed in graph theoretical terms as decreased modularity and system 

segregation. Chan et al. (2014), for example, have reported that system segregation in resting-

state fMRI data declined with increasing age in healthy adults 20-89 years of age, reflecting a 

greater age-related decrease in the strength of within-module functional connectivity relative to 

between-module connectivity, particularly for modules in association cortex. This pattern of 

functional connectivity was more prominent for individuals over 50 years of age and was 

predictive of long-term memory function, independently of age. Chong et al. (2019) reported a 

longitudinal decline in system segregation, as well as a cross-sectional association between 

worse cognitive performance and lower module segregation and distinctiveness in older adults. 

Several other investigations have reported age-related decline in the distinctiveness of modules, 

based on measures of the strength and efficiency of within- and between-module connectivity 

(Bagarinao et al., 2019; Betzel et al., 2014; Cao et al., 2014; Geerligs et al., 2015; Grady et al., 

2016; Song et al., 2014; Spreng et al., 2016). Overall, the graph theoretical investigations of 

resting-state functional connectivity support the concept of age-related neural dedifferentiation, 

the idea that aging is associated with a decline in the specialization or separation of functional 

neural modules (Geerligs et al., 2014; Goh, 2011; Park et al., 2004). 

 Graph theoretical investigations of age-related differences in brain structure more 

consistently report age-related decline in structural connectivity, with some variation in the 

degree to which strength and efficiency decline. The first application of graph theoretical 

measures to this issue (Gong et al., 2009) found that, in a sample of 95 healthy adults 19-85 

years of age, the overall structural connectivity strength between cortical nodes declined with 
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age, whereas the global efficiency of the connections (i.e., the shortest path between any two 

nodes in the whole network) was constant. Age-related differences were evident, however, in the 

efficiency of nodes within specific regions, such that the efficiency of nodes in occipital and 

parietal cortical regions decreased with age, whereas the efficiency of nodes in frontal and 

temporal regions increased. Zhao et al. (2015) reported a different pattern, in which both the 

global and local efficiency of network connections (both within-module and between-module) 

decreased with increasing adult age, particularly in bilateral prefrontal and temporal regions. Wu 

et al. (2012) found that structural global efficiency declined with increasing age to a greater 

extent than did local efficiency, and that fewer between-module connections were evident in the 

older adults’ data, yielding a more localized and segregated network.  

 1.3. Age-related differences in the interaction of structural and functional 

connectivity. A critical issue, which we address in this research, is the interactive influence of 

structural and functional connectivity on age-related differences in fluid cognition. Previous 

studies of these different forms of connectivity, in the context of aging (Andrews-Hanna et al., 

2007; Chen et al., 2009; Fjell et al., 2016; Hedden et al., 2016; Madden et al., 2017), have most 

often treated structural and functional connectivity measures as parallel or separate variables and 

did not test their potential interactions. Applying graph theoretical methods, Betzel et al. (2014) 

observed that nodes with direct (efficient) structural connections exhibited relatively little age-

related change in functional connectivity, whereas nodes with less efficient structural 

connections were more likely to exhibit an age-related increase in functional connectivity. This 

pattern suggests that the age-related decrease in functional system segregation reported in other 

studies (Chan et al., 2014; Chong et al., 2019) may be a result of decreased structural efficiency, 

with functional connections between structurally disconnected regions relying on indirect paths.  
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 In this investigation, we obtained graph theoretical measures for both structural and 

resting-state functional connectivity, to determine the influence of these variables on age-related 

differences in fluid cognition. In a previously published analysis of this cross-sectional data 

(Madden et al., 2017), we established that measures of executive function exhibited age-related 

decline beyond that associated with perceptual speed and memory. Estimates of both structural 

and functional connectivity exhibited age-related decline, and functional connectivity within 

sensorimotor regions (visual, motor, and basal ganglia/thalamus) mediated the relation between 

age and executive function. However, as noted above, the earlier investigation did not test the 

potential influences between structural and functional connectivity, and the ICA methods used to 

define functional networks did not assess between-network connectivity. 

We extend the earlier findings by using graph theoretical measures to characterize 

different aspects of network connectivity: strength, efficiency, and system segregation, for both 

structural and functional data, with three overarching hypotheses. First, in the functional 

connectivity data, we expected to confirm previous findings indicating that with increasing age, 

modules tend to become less distinct, as expressed in the age-related decline in the graph 

theoretical measure of functional system segregation (Chan et al., 2014; Chong et al., 2019; Wig, 

2017). Second, based on prior findings of a positive relation between functional system 

segregation and memory performance, with age controlled statistically (Chan et al., 2014), we 

hypothesized that across a range of adult age (19-79 years), functional system segregation would 

have a mediating influence on the negative relation between age and fluid cognition. Finally, 

given the evidence that anatomy exerts some degree of constraint on functional connectivity 

(Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007; Zhu et al., 2014), and the 

previous findings indicating an association between age-related differences in structural and 
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functional connectivity measures (Andrews-Hanna et al., 2007; Betzel et al., 2014; Chen et al., 

2009; Fjell et al., 2016; Zimmermann et al., 2016), we hypothesized that structural connectivity 

would have a direct influence on functional connectivity in the context of neurocognitive aging.  

2. Materials and methods 

2.1. Participants 

This research was conducted in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) for experiments involving humans. The protocol was 

approved by the Duke University Institutional Review Board, and participants gave written 

informed consent at the start of the study. The participants were 153 community-dwelling 

individuals between 19 and 79 years of age. One hundred and forty-five of these individuals 

were included in the Madden et al. (2017) study. Eight participants had been excluded from the 

2017 study due to missing data from another scan sequence (T2-weighted fluid-attenuated 

inversion recovery; FLAIR), which was not included in the present analyses, and these 

participants were added to the current data set. All participants were right-handed, had completed 

at least 12 years of education, did not report any major health issues, including atherosclerosis, 

neurological, and psychiatric disorders (Christensen et al., 1992). 

The participants completed an initial screening session, which comprised the Freiburg 

Visual Acuity Test (FRACT; Bach, 1996), Dvorine color vision test (Dvorine, 1963), Beck 

Depression Inventory (BDI; Beck, 1978), Mini-Mental State Exam (MMSE; Folstein et al., 

1975), vocabulary subtest of the Wechsler Adult Intelligence Scale-III (WAIS; Wechsler, 1997), 

and a practice version of the visual search task performed during the event-related functional 

imaging (reported separately). All participants had corrected visual acuity equal to or better than 

Snellen 20/40, scored 27 or higher on the MMSE, less than 11 on the BDI, higher than the 50th 
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percentile on the WAIS-III vocabulary subtest, and 12 or higher on the Dvorine color vision test. 

Data from nine individuals were excluded due to technical problems with their functional or 

structural imaging data, and one individual had an unusually high studentized residual score in 

the psychometric data. The final sample (Table 1) consisted of 143 participants (78 females) with 

49 participants between the ages of 19 and 39 years (M = 25.14 years), 43 participants between 

the ages of 40 and 59 years (M = 51.40 years) and 51 participants between the ages of 60 and 79 

years (M = 67.75 years).  

/— Insert Table 1 about here —/ 

2.2. Cognitive measures 

The cognitive outcome measures comprised nine tests of fluid cognition, which targeted 

three domains: elementary perceptual speed, executive function, and memory, with three 

indicator variables per domain. With the exception of two memory tests and one executive 

function test that were standardized psychometric tests, all of the tests were designed for 

computer administration within E-Prime (Psychology Software Tools, Sharpsburg, PA, USA), 

and responses were collected from response keys on the computer keyboard. The tests for 

perceptual speed included: a) simple reaction time (RT; pressing the space bar at the onset of a 

square); b) choice RT (pressing a left or right key at the appearance of a left- or right-facing 

arrow); and c) another version of choice RT drawn from the neutral trials of the Stroop task 

(pressing one of two keys to indicate the displayed color of a word). The tests for executive 

function included: a) a digit-symbol coding task (Salthouse, 1992); b) a verbal fluency task 

(Goodglass and Kaplan, 1972; Loonstra et al., 2001), using both letter and semantic category 

probes; and c) a version of Stroop interference (Stroop, 1935). The Stroop measure was RT to 

indicate the display color (red or blue) for the words red and blue, intermixed with the non-color 
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(neutral) words art and game. The interference measure was the proportional increase in correct 

RT for the incompatible trials relative to the compatible trials. The tests for memory included: a) 

the WAIS Digit Span subtest (Wechsler, 1997); b) the delayed memory subtest from the 

California Verbal Learning Test (CVLT; Delis et al., 1987); and c) a visual working memory 

task similar to that of Saults and Cowan (2007). This latter task involved a comparison of two 

sequentially presented displays, each containing six colored squares. Duration for each display 

was 1050 ms, and a blank, inter-display interval was 1400 ms. The participant’s task was to 

make a yes/no keypress response as to whether one of the colored squares in the second display 

differed from the first display.  

To define the cognitive outcome measures, we used a factor-analytic approach (Hedden 

et al., 2012; Hedden et al., 2016; Salthouse et al., 2015) to obtain domain-specific measures for 

perceptual speed, executive function, and memory. We obtained the first unrotated factor from a 

principal axis factor analysis of all nine cognitive tests, partialed for WAIS vocabulary and 

gender, and used the factor score (for each participant) from the first unrotated factor as a general 

summary measure of fluid cognition. We then used a similar approach to obtain the first 

unrotated factor for the three tests in each of the three domains of perceptual speed, executive 

function, and memory. Because all of the nine tests were intercorrelated, we obtained residual 

scores for each domain by partialing out the other six tests not associated with that domain, as 

well as gender and vocabulary. Madden et al. (2017) provide additional procedural details for the 

cognitive testing and construction of the factor scores. 

2.3. MRI data acquisition 

The MRI session was conducted approximately one month after the initial screening 

session. The functional and anatomical imaging data was collected on a 3 T GE MR750 whole-
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body 60 cm bore MRI scanner (GE Healthcare, Waukesha, WI, USA) equipped with 50 mT/m 

gradients and a 200 T/m/s slew rate. The scanner possessed an 8-channel head coil that was used 

for radio frequency reception. Participants wore earplugs to reduce scanner noise and foam pads 

were used to minimize head motion. Three-plane (straight axial/coronal/sagittal) localizer fast 

spin echo images were acquired at the start of the scan to define the volume for data collection. 

Global field homogeneity was ensured by the use of a semi-automated high-order shimming 

program. Two resting-state runs of T2*-weighted (functional) imaging sensitive to the blood 

oxygen-level-dependent (BOLD) signal, 4 or 5 runs of event-related T2*-weighted imaging 

(depending on the in-scanner task, not reported here), 1 run of T1-weighted anatomical images, 2 

runs of diffusion-weighted imaging (DWI) and 1 run of T2-weighted FLAIR imaging were 

recorded.  

Anatomical T1-weighted images included 166 straight axial slices that were attained 

using a 3D fast inverse-recovery-prepared spoiled gradient recalled (SPGR) sequence with 

repetition time (TR) = 8.13 ms, echo time (TE) = 3.18 ms, inversion recovery time (TI) = 450 

ms, field of view (FOV) = 256 mm x 256 mm, flip angle = 12°, voxel size = 1 x 1 x 1 mm, 256 x 

256 acquisition matrix, and a sensitivity encoding (SENSE) factor of 2, using the array spatial 

sensitivity encoding technique and extended dynamic range.  

The DWI data of 68 contiguous slices was acquired along the AC-PC plane using dual-

echo spin-echo parallel EPI pulse sequence; TR = 9000 ms, TE = 81.3 ms, FOV = 256 mm x 256 

mm, flip angle = 90°, voxel size = 1 x 1 x 2 mm, acquisition matrix size = 128 x 128, and 

SENSE acceleration factor of 2. The DWI scan utilized 30 diffusion-encoding directions (b-

value = 1000 s/mm2) with 1 non-diffusion-weighted b0 (0 s/mm2).  
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For the resting-state scans, participants were instructed to remain awake with eyes open 

and to view a fixation cross throughout the run. T2*-weighted gradient-echo EPI functional 

images were 29 contiguous slices acquired at an axial oblique orientation, parallel to the plane 

including the anterior and posterior commissures (AC-PC plane) with TR = 1500 ms, TE = 27 

ms, FOV = 240 mm x 240 mm, flip angle = 77°, voxel size = 3.75 x 3.75 x 4 mm, 64 x 64 

acquisition matrix, and a SENSE factor of 1. Each of the 2 resting-state functional MRI (fMRI) 

runs comprised a time series of 162 brain volumes, collected over a period of 4.05 min. Four 

initial radio frequency excitations were performed to achieve steady state equilibrium and were 

subsequently discarded, resulting in 158 remaining brain volumes per run.   

2.4. MRI preprocessing 

Study-specific anatomical template. The image processing pipeline is illustrated in Figure 

2. We created a study-specific anatomical template using the Advanced Normalization Tools 

(ANTs) script for multivariate template construction 

(https://github.com/ANTsX/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruction.sh). 

First, we made an average T1 brain image from all 143 participants in the data set. Each individual 

T1 brain was then warped to this starting point average brain. The resultant individually warped 

T1 images were merged together to create a new averaged template, which became the starting 

point for the next iteration of warping individual T1 images. The iteration continued until the 

mean image converged, yielding the final study-specific template.  

/— Insert Figure 2 about here —/ 

Structural connectivity. To process the structural DWI data we used a custom shell script 

(https://github.com/ElectricDinoLab/Connectome/blob/master/connectome_maker.sh; Davis et 

al., 2019), which implements software packages in FSL (FMRIB Software Library) from the 
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Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Jenkinson et al., 2012), and MRtrix3 (http://mrtrix.org). 

Two runs of DWI scans were collected for each participant, which were concatenated to generate 

one data set for the analysis. The concatenated data were first de-noised with MRtrix using the 

function dwidenoise, and the brain was extracted from the skull using BET (brain extraction tool) 

in FSL. The data were preprocessed using the MRtrix dwipreproc function. Head motion and 

eddy current distortion were corrected using the FSL eddy tool, and bias-field correction was 

completed with MRtrix function of dwibiascorrect. DWI intensity normalization was applied to 

the two DWI runs, which were averaged and prepared for tractography. Fiber orientation 

distribution (FOD) was calculated using dwi2fod with the option of constrained spherical 

deconvolution (CSD) followed by the generation of whole-brain, probabilistic tractography. 

MRtrix includes a simplified version of the spherical harmonic model to calculate the coefficient 

that is used in FOD to generate tracts. For CSD map generation, the maximum number of 

spherical harmonic terms was set to 8, and a single-fiber response kernel was estimated from 

white matter voxels with FA > 0.3. 

In the tractography, Anatomically Constrained Tractography (ACT) was adopted to 

define the interface between white matter and grey matter where the streamlines were seeded, to 

improve the definition of the streamlines. The T1 image was registered to the diffusion image 

and segmented in FSL into five tissue types: cortical gray matter, subcortical gray matter, white 

matter, cerebrospinal fluid, and pathological tissue. Following segmentation, the ACT option 

was added to the tckgen function of MRtrix to anatomically constrain the extent of streamline 

propagation for the tractography. For each participant, ten million tracts were generated from an 

iterative procedure with random placement of seeds within the mask, with a step size of 0.2 mm. 
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These tracts were then filtered using SIFT (spherical-deconvolution informed filtering of 

tractograms) in MRtrix, which identified the false positive tracts, from a cost-function based on 

the FOD (Yeh et al., 2016), yielding a final set of one million tracts per participant.  

Regions of interest (ROIs) for both the structural and functional data sets were those 

defined by the subparcellated anatomical Harvard-Oxford Atlas (HOA; Jao et al., 2013; Monge 

et al., 2017) with 397 ROIs. This subparcellated atlas excludes the cerebellum, brain stem, 

cerebral white matter, and lateral ventricle regions. The regions were derived by sub-sampling 

the larger regions defined by the automated anatomical labeling (AAL) template image (Tzourio-

Mazoyer et al., 2002) to yield a finer-grained parcellation with all regional parcels or nodes 

comprising an approximately equal number of voxels. This approach yielded a spatial scale of 

resolution larger than the individual voxel but also smaller than the regions within the AAL 

template, which can obscure some regionally specific effects (Zalesky et al., 2010). It is also 

possible to define nodes on the basis of functional connectivity (Wig et al., 2014; Yeo et al., 

2011). We believed, however, that using nodes from known anatomy for both structural and 

functional data would be the least biased approach for defining modules for both types of data. 

As noted previously in this section, a study-specific template was created based on all 143 

participants. The HOA regions were registered to the study-specific template using FLIRT 

(FMRIB's linear image registration tool) in FSL and then mapped to the individual participant’s 

native space to extract the numbers of tracts for each participant. The weighted connectivity 

matrix of 397 x 397 ROIs was then computed, for each participant, based on the number of 

streamlines traversing between all pairs of ROIs. All 397 x 397 cells of the averaged matrix were 

used, and each ROI contained a connectivity value from at least 87% of the participants, 
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although some matrix cells for individual participants were zero. The raw connectivity matrices 

(397×397×143) were then used for each participant as the basis for the graph theory analysis. 

Resting-state functional connectivity. The resting-state fMRI data were preprocessed 

using an in-house pipeline 

(https://wiki.biac.duke.edu/biac:analysis:resting_pipeline#download_source) and FSL tools. Four 

brain volumes were removed from the start of each of the two resting state runs to ensure that the 

steady state equilibrium was attained. Each of the two runs was then corrected for the sampling 

offsets inherent in slice-wise EPI acquisition sequences using FSL slicetimer. The two runs were 

then demeaned and concatenated into a single data set comprising the 8.10 min period. Motion 

correction using MCFLIRT (motion correction using FMRIB's linear image registration tool) 

was applied to the concatenated data set (Jenkinson et al., 2002). Twenty-four motion parameters 

that included the six realignment parameters, their temporal derivatives and squares were 

regressed from each voxel using linear regression (Friston et al., 1996). The brain was extracted 

from the skull with BET, and the data were first normalized into the study specific template and 

then the standard MNI152 T1 space using FLIRT and FNIRT (FMRIB's nonlinear image 

registration tool). Next, signal from white matter and cerebrospinal fluid was regressed out on 

the basis of masks created with FAST (FMRIB's Automated Segmentation Tool; Zhang et al., 

2001). Global signal regression was not performed, because the global negative index (Chen et 

al., 2012) was greater than the critical value of 0.03 for each participant, indicating that 

regressing global signal would not be advantageous. Finally, temporal band-pass filtering limited 

the data to frequencies in the 0.001- 0.08 Hz range.  

We performed additional motion scrubbing of volumes with either > 0.5 mm for 

framewise displacement (FD) or 0.5% for timecourse variance (DVARS; Power et al., 2012). 
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Two brain volumes before and after the marked volumes were also excluded. From the total 

45,188 volumes collected, 421 (0.93%) were excluded on the basis of these motion criteria. 

Motion-scrubbed volumes did not exceed 22% for any participant. In exploratory analyses, we 

examined the correlations between FD and the graph theoretical measures that we used as our 

imaging outcome variables, and none of these correlations was significant.  

The resting-state fMRI time series for each participant consisted of 316 brain volumes 

(concatenated 8.10 min period). For each of the 397 HOA ROIs, for each participant, we first 

obtained the average time series for all the voxels in the ROI, across the 316 volumes, and then 

normalized (z-scored) the ROI time series. The normalized resting-state fMRI time series for 

each of the ROIs was then correlated with the corresponding value for each of the other 

remaining ROIs, yielding a 397 x 397 correlation matrix for each participant. The Pearson r 

correlation value in each matrix cell was transformed to Fisher-z. 

Because there is ambiguity regarding the interpretation of negative correlations, 

negatively weighted edges and the diagonals were set to zero, as recommended by Rubinov and 

Sporns (2010). However, we also conducted an exploratory analysis to examine the nature of 

connectivity among these negative correlations. We constructed functional matrices with only 

the negative correlations and then set the diagonals and positive values to zero. We reversed the 

sign of the negative correlations, because the graph theoretical analyses require positive values. 

We derived both the network partitions and the modularity value (i.e., Q; the tendency of the 

network to segregate into partitions, as defined in the following section) for these negative 

functional matrices. The results indicated that our initial 397 ROIs (network nodes), were 

partitioned into 297 modules, with an average modularity value (Q) of essentially zero (0.0008). 

Because the negative correlations did not partition into a limited number of modules, these 
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findings suggest that, in the present data set, the negative correlations were not a systematic 

source of variance in the functional connectivity data. All reported analyses are based on the 

positive correlations.    

 Functional matrices are typically more densely connected than structural matrices, 

reflecting the many indirect connections, with varying strength, in functional data. We conducted 

analyses on weighted matrices, rather than on thresholded binarized matrices, for both structural 

and functional data, to retain sensitivity to this variation in connection strength and to avoid 

introducing multiple statistical comparisons across different thresholds (Rubinov and Sporns, 

2011). 

2.5. Graph theoretical measures  

In graph theory, a network consists of nodes and edges (connections between nodes), 

which can be segregated into non-overlapping modules or communities, characterized by 

stronger within-module and weaker between-module connections. Here, the network nodes were 

the 397 subparcellated HOA ROIs and the edges were the structural or functional connections 

between the nodes. We averaged connectivity matrices of all participants to obtain a single 

structural matrix and a single functional matrix. Module definition is an estimate of the 

community structure of the network and is influenced by many variables, including the 

resolution of the partitioning algorithm and the degree of interconnectedness between pairs of 

communities (Fortunato and Barthélemy, 2007; Traag et al., 2019). Many studies have used 

previously defined sets of modules, based on patterns of resting-state or task-related fMRI data 

(Power et al., 2011; Yeo et al., 2011). However, we defined modules in a data-driven manner, 

within the structural and functional domains, rather than using an independent definition of 

modular structure, so that the analyses would reflect the network community structure inherent in 
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the data. To compute the optimal partitioning of the whole-brain data into modules, we applied 

the Louvain algorithm (Blondel et al., 2008) from the Brain Connectivity Toolbox (www.brain-

connectivity-toolbox.net; Rubinov and Sporns, 2010) on the group-averaged structural and 

functional matrices. 

For the structural data, using the default value (1.0) of the resolution parameter (gamma; 

γ) of the Louvain algorithm yielded eight interpretable modules. For the functional data, 

however, using the default gamma of 1.0 yielded only four modules corresponding 

approximately to cortical lobes. Increasing the gamma to 1.15 yielded six modules that were 

more interpretable functionally and included anterior and posterior components of the default 

mode network. Increasing gamma further to 1.25 yielded seven functional modules, which were 

similar to the partitioning with gamma = 1.15 except that the posterior default mode region was 

divided into separate modules, which were less easily interpretable. We therefore maintained 

gamma at 1.15 for the functional data, which produced a modular structure corresponding most 

closely to previous literature and known anatomy.  

Other than different resolution parameters, definition of the modules proceeded in a 

similar manner, in separate analyses, for the structural and functional data. We used the 

consensus clustering approach to obtain the optimal partitioning of modules (Lancichinetti and 

Fortunato, 2012). We ran the Louvain algorithm 150 times on the averaged matrix and calculated 

an agreement matrix from those 150 iterations, to obtain the proportion of times each pair of 

nodes were assigned to the same module. To remove any weak or spurious node agreements, we 

then thresholded the agreement matrices at 0.50, thus retaining values for only those pairs of 

nodes that were assigned to the same module at least 50% of the time. We then applied the 

optimal structural and functional modules, derived from the averaged data, to the connectivity 
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data for each participant. The averaged connectivity matrices comprising the eight structural 

modules and six functional modules are described in more detail in Results (section 3.2.2.).  

The term modularity refers to the degree to which all of the nodes in the network (in this 

case the brain) partition into modules, that is, groups of nodes with strong within-module 

connections and weaker between-module connections. For a network with c modules, modularity 

Q is defined by Equation 1: 

   � = �
�� ∑ ��	
 − 
�
�

�� �	,
 ���	, �
� ,    (1) 

where �	
  represents the weight of the edge between nodes i and j,�	 = ∑ �	

  is the sum of 

the weights of the edges attached to node i, �	 is the community to which node i is assigned, δ is 

the Kronecker delta function, and � =  �
� ∑ �	
	
  (Newman and Girvan, 2004). 

In our primary analyses we imposed the group-averaged modular partition on the 

individual participants’ data, but we also examined individual differences in modular structure. 

When we estimated the structural modules at the individual participant level, the results yielded 

between eight and ten structural modules for 91.61% of the participants, and the correlation 

between the number of modules and age was not significant, r = 0.095, p = 0.261. The 

modularity value Q for the structural data (M = 0.682, SD = 0.011) did not vary significantly 

with age, r = 0.074, p = 0.382. For the functional data, 98.6% of the participants exhibited 

between three and six modules, and the number of modules did not vary significantly with age, r 

= -0.075, p = 0.372. However, Q (M = 0.174, SD = 0.039) decreased significantly with age in the 

functional data, r = -0.385, p < 0.001, indicating some age-related variation in modular structure.  

We also measured the degree to which each person’s modular organization differed from 

that of the group-averaged data, using the partition_distance function from the Brain 

Connectivity Toolbox. This function estimates the variation of information (VI), which is a 
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normalized information-theoretic measure of the distance between network organizations, where 

a VI of 0 represents perfect correspondence of partitions (Meilă, 2007). In the structural data, 

mean VI was 0.163 (SD = 0.032) and was not correlated with age, r = 0.026, p = 0.7606 

(uncorrected). The mean VI for the functional data (M = 0.386; SD = 0.039) was correlated 

positively with age, r = 0.298, p < 0.0003 (uncorrected), indicating a greater disparity in the 

modular structure, with increasing age, relative to the average structure. Thus, although the 

functional data exhibited some age-related differences in modular structure, both the structural 

and functional data exhibited a constancy in the number of modules consistent with the group-

averaged data.  

 Our analyses focus on four graph theoretical measures that reflect the properties of 

network information transmission: global efficiency, local efficiency, strength, and system 

segregation. As described in more detail in the immediately following paragraphs, these 

measures were calculated both at the whole-brain level and at the individual module level, for 

each participant, for the analyses of their relation to age and the cognitive outcome measures.  

2.5.1. Efficiency. Considering information transmission as a path between two nodes, 

efficiency represents the number of intervening edges between the nodes, with more efficient 

paths being characterized by fewer intervening edges (Latora and Marchiori, 2001). Global 

efficiency is the measure of efficient information propagation across the whole network. It 

represents the average inverse shortest path length in the network, that is, the minimum number 

of edges to be traversed between each pair of nodes, averaged across all node pairs. It was 

calculated by Equation 2: 

    ������ ������� �! =  �
"("$�) ∑ �

&�,�	'
∈)      (2) 
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where, n is the number of nodes in the network, l is the shortest path length, and i and j are nodes 

in graph G. Local efficiency, in contrast, represents information propagation in the neighborhood 

of an individual node (i.e., nodes that are directly connected to the node). It was calculated by 

Equation 3: 

    *���� ������� �! =  �
"�("�$�) ∑ �

&�,+
,
∈,    (3) 

where,  	 is the number of nodes in the neighborhood of node i (excluding node i itself), l is the 

shortest path length, and j and k are nodes in subgraph g (consisting of neighborhood nodes of 

node i). At the whole-brain level, local efficiency was averaged across all nodes (i.e., the 397 

ROIs), whereas at the module level, local efficiency was averaged across all the nodes within the 

module.  

2.5.2. Strength. Strength refers to the strength of connections between two nodes, 

expressed as the number of streamlines in the case of the DWI data and the magnitude of the 

positive correlations in the case of the resting-state fMRI data. Three strength measures were 

obtained for each participant. First, average strength represents the strength of the connection of 

each node to every other node in the brain. At the whole-brain level, the estimate of strength was 

averaged across all nodes. At the module level, strength represents the averaged connection, for 

the nodes in the module, to all other nodes in the brain. Second, for each node, between-module 

strength represents the strength of a node’s connection to all other nodes outside its associated 

module. At the whole-brain level, the estimate was averaged across all nodes, whereas at the 

module level the estimate represents the averaged connections from the nodes within the module 

to all other nodes outside the module. Third, within-module strength represents the averaged 

strength of the connections among the nodes within each module. At the whole-brain level, this 

Jo
urn

al 
Pre-

pro
of



Aging Connectivity  24 

estimate was averaged across all nodes, whereas at the module level, within-module strength 

represents only the nodes within the module. 

2.5.3. System segregation. System segregation represents the degree to which modules 

are separated from each other, expressed as the magnitude of the within-module strength relative 

to between-module strength (Chan et al., 2014; Wig, 2017). It was calculated by Equation 4:  

    -!./�� .�01�0�/��  =  (2̅4  − 2̅5)/2̅4   (4) 

where, in the DWI data, 2̅4 is the mean number of streamlines between nodes within each 

module and 2̅5 is the mean number of streamlines between nodes of one module to nodes in all 

other modules. In the resting-state fMRI data, 2̅4 is the mean normalized correlation between 

nodes within each module and 2̅5 is the mean normalized correlation between nodes of one 

module to nodes in all other modules. For both modularity and system segregation, higher values 

indicate a more segregated network. At the whole-brain level, system segregation was averaged 

across all nodes, whereas at the module level, system segregation was defined on the basis of the 

nodes within the module. 

2.6. Statistical analyses  

 Statistical analyses were conducted using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) 

within the general linear model. Mediation analyses were conducted to test models of the relation 

between age, the graph theoretical measures, and the cognitive outcome variables. The mediation 

analyses were conducted with the PROCESS macro for SAS (Hayes, 2013). We used the 

network-property measures that were available for analyses at both the whole-brain and 

individual module levels (efficiency, strength, and system segregation) as mediator variables. In 

each model, age was the predictor, the graph theoretical measures were the mediators, and the 

outcome variables were the cognitive measures (factor scores). In models with multiple 
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mediators, the effects of individual mediators are covaried with respect to the other mediators. 

For each model, parameter estimates and 95% bootstrap confidence intervals were based on 

10,000 bootstrap samples. Significance testing of parameter estimates for individual paths was 

conducted by t-test, but mediation (path interaction) effects were assessed by the confidence 

intervals, as these latter effects are typically not distributed normally (Hayes, 2013). Mediation 

effects were considered to be statistically significant when the associated 95% confidence 

interval did not include zero. 

3. Results  

3.1. Screening and cognitive measures 

The screening measures in Table 1 indicate that increased age was associated with 

decreasing visual sensory function, as represented by declining visual acuity and color vision. A 

detectable decrease in MMSE with increasing age was also present, but this result is likely 

influenced by the limited variability associated with the inclusion criteria (MMSE = 27-30). No 

age-related decline in WAIS vocabulary was evident, and the years of education increased with 

age.  

Overall fluid cognition, comprising the first factor score for the nine cognitive tests, 

partialed for gender and WAIS vocabulary, declined significantly with age, r = -0.718, p < 

0.0001 (Figure 3, Panel A). The factor scores for the three tests within each of the three 

individual cognitive domains, partialed for gender and WAIS vocabulary, also declined with age: 

executive function, r = -0.629, p < 0.0001, memory, r = -0.447, p < 0.0001, and speed r = -0.580, 

p < 0.0001. As noted previously in the Methods (section 2.2.), to control for the shared variance 

among the tests, we partialed the factor scores in each domain for the six tests not associated 

with that domain (Madden et al., 2017; Salthouse et al., 2015). The residual executive function 
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score exhibited a significant decline with age (Figure 3, Panel B), whereas the residual scores for 

memory and speed did not exhibit an age-related decline, independently of the variance shared 

with tests outside their domain (Figure 3, Panels C and D). 

/— Insert Figure 3 about here —/ 

3.2. Graph theoretical measures 

3.2.1. Whole-brain analysis. Correlation of whole-brain measures with age are presented 

in Table 2. Significance levels for the correlations are Bonferroni-corrected for six comparisons 

within the structural and functional domains. Five of the structural network-property measures 

related to efficiency and strength of connectivity declined with age, although structural system 

segregation was constant with age. In the functional measures, only system segregation declined 

with age. 

/— Insert Table 2 about here —/ 

 Because age-related decline was significant for overall fluid cognition and residual 

executive function (Figure 3), we constructed two separate mediation models for these variables 

(Table 3). In each model, age was the predictor, and the outcome variable was either overall fluid 

cognition (Model 1) or residual executive function (Model 2). The potential mediators were the 

network-property measures that varied significantly with age: structural global efficiency, 

structural local efficiency, structural average strength, structural within-module strength, and 

functional system segregation. These were parallel mediation models, in the sense that the 

mediators were assessed simultaneously, covaried for each other (Hayes, 2013). Within each of 

these models (Table 3), the a path (age � mediator) was significant for all of the mediators, 

reflecting the basis for selecting these mediators. The b (mediator � outcome) path was 

significant only for functional system segregation in Model 2. That is, among all the mediators, 
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only the relation between functional system segregation and residual executive function was 

significant independently of age. The parameter estimate was positive, indicating that increasing 

functional system segregation was related to a higher level of executive function. The c path 

(total effect of age on the outcome measure) was significant for both models, with negative 

parameter estimates, because we selected the two outcome variables with age-related decline. 

Across the two models, the only mediation effect that was significant was associated with 

functional system segregation, which mediated the relation between age and residual executive 

function in Model 2 (Figure 4). The c’ path (direct effect of age) for residual executive function 

was not significant following mediation by functional system segregation.    

/— Insert Table 3 and Figure 4 about here —/ 

To determine whether the structural network properties directly influenced functional 

system segregation, we constructed a model in which the structural measures of efficiency and 

strength were potential mediators of the relation between age and functional system segregation 

(Table 4). None of the structural measures, however, was a significant mediator, and none 

exhibited an age-independent relation to functional system segregation. 

/— Insert Table 4 about here —/ 

 Although the direct influence of structural connectivity on functional connectivity was 

not significant in the context of the graph theoretical variables, we examined the relation 

between structural and functional connectivity in the raw matrix data underlying the graph 

theoretical analyses. We first restricted the data set to those cells in the structural connectivity 

matrix, for each participant, that contained a positive value, that is, pairs of nodes with a 

structural connection. We conducted four exploratory tests and Bonferroni-corrected the 

significance levels for these tests. The average number of streamlines per cell (i.e., node to node 
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connection) in each person’s structural matrix declined significantly with age (Figure 5, Panel 

A), r = -0.318, p < 0.001 (corrected). The Fisher-z transformed correlation of the fMRI time 

series associated with these streamlines, however, did not exhibit age-related decline (Figure 5, 

Panel B). As an estimate of structural-functional connectivity, we obtained, for each participant, 

the Pearson r correlation between those structural connections (i.e., number of streamlines) and 

the functional connectivity in the corresponding cells of the functional connectivity matrix. The 

resulting correlations (Fisher-z transformed), were overall greater than zero, t(142) = 80.07, SE = 

0.00418, p < 0.001 (corrected), and declined significantly with age (Figure 5, Panel C), r = -

0.402, p < 0.001 (corrected). 

/— Insert Figure 5 about here —/ 

3.2.2. Individual modules. The group-averaged structural data yielded eight modules 

(Figure 6). These essentially reflected four modules with both left and right hemisphere versions: 

occipitoparietal regions (Figure 6, Panels A and F), sensorimotor regions (Figure 6, Panels B and 

H), temporal regions (Figure 6, Panels C and E), and frontal regions (Figure 6, Panels D and G). 

The group-averaged resting-state fMRI data yielded six functional modules (Figure 7). In 

contrast to the structural modules, which were all unilateral, the functional modules were all 

bilateral. These comprised sensorimotor regions (Figure 7, Panel A), anterior and posterior 

components of the default mode network (Figure 7, Panels B and F), limbic and orbitofrontal 

regions (Figure 7, Panel C), auditory (superior temporal) regions (Figure 7, Panel D), and 

occipitoparietal regions (Figure 7, Panel E).  

/— Insert Figures 6 and 7 about here —/ 

3.2.3. Age-related differences for individual modules. To investigate age-related 

differences for individual modules, we conducted a multiple regression model for each of the 
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five network properties within both the structural and functional data for each module: local 

efficiency, average strength, between-module strength, within-module strength, and system 

segregation. (Because global efficiency refers to the whole-brain network, this measure was not 

analyzed at the level of the individual modules.) In each model, age was the outcome variable, 

and the individual modules (eight for the structural data, six for the functional data) were 

simultaneous predictor variables. Thus, a significant effect (beta value) for an individual module 

represented a contribution to the age-related effect above and beyond the other modules. 

Significance levels were Bonferroni-corrected for the five models in each domain.  

These analyses indicated that significant age-related effects (from the combined effects of 

all modules) were present for local efficiency, average strength, between-module strength, 

within-module strength, and system segregation (Table 5). An age-related decline in structural 

connectivity (i.e., negative beta value) for the right frontal module contributed significantly to 

the overall age-related effects for average strength, within-module strength, and system 

segregation. In the structural data, the left occipitoparietal module also exhibited age-related 

decline in between-module strength. The right temporal module also exhibited a positive, though 

small, age-related effect for average strength (Table 5), which was also evident in the bivariate 

correlation between age and average strength, r = 0.159, p < 0.06 (uncorrected).  

The only age-related effect in the regression models of the individual functional modules 

was associated with system segregation (Table 6), as in the whole-brain analyses (Table 2). The 

only unique contribution from an individual module was the age-related decline in system 

segregation for the occipitoparietal module.  

/— Insert Tables 5 and 6 about here —/ 
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 3.2.4. Alternative network partitions. The analyses reported above rely on one approach 

to defining structural and functional modules, in which the connectivity matrices for structural 

and functional data were each averaged across all participants, and the modules estimated from 

the averaged matrices were applied to individual participants’ data. We adopted this approach to 

identify a set of modules, within the structural and functional data, that would be comparable 

across participants and allow correlation with our cognitive outcome variables. We also explored 

two alternative methods of partitioning the networks, in which the structural modules were used 

to partition both the structural and functional data. In both of these approaches, we implemented 

consensus clustering, with 150 iterations of the Louvain algorithm, gamma = 1.0, and 

thresholding of the agreement matrices as described above (section 2.5., Graph theoretical 

measures). In the first approach, we used the averaged structural connectivity data to define the 

modules for both the structural and functional data, with the eight structural modules (Figure 6) 

applied to the functional data. In the second approach, we did not average the matrices, but 

instead used each participant’s module partition, from the structural data, for both the structural 

and functional data. That is, in this latter approach, we did not require that the individual 

modules be constant across participants.  

The results of these two alternative approaches to partitioning the data, reported in 

Supplementary Material, yielded both similarities and differences to the findings reported in this 

Results section. When using the averaged structural modules to define the functional modules, 

the functional connectivity results were comparable to defining the modules from the functional 

data as reported in this Results section. With this alternative method of defining the functional 

modules, the age-related decline in system segregation remained the only age-related effect 

(Table S1). In a mediation analysis with functional system segregation and the structural whole-
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brain measures of strength and efficiency as mediators, functional system segregation was the 

only significant mediator of the age-related decline in residual executive function (Table S2), and 

no mediation was evident for overall fluid cognition. This is exactly the pattern reported in this 

Results section. 

When, however, we allowed the modules to vary across participants and applied each 

participant’s structural modules to their functional data, a different pattern of age-related effects 

occurred. The structural and functional connectivity data for global efficiency, local efficiency, 

and average strength were identical across the different methods, by definition, because modular 

structure does not contribute to these whole-brain measures. The within-module and between-

module strength values, however, do depend on modular structure, and in contrast to our primary 

analyses (Table 2), these latter values did not exhibit a significant age-related decline in 

structural connectivity when defined at the participant level (Table S3). In the functional data, 

system segregation continued to be the only variable exhibiting age-related decline (Table S3). 

When functional system segregation was included, along with structural global efficiency, local 

efficiency, and average strength, in a mediation model of the relation between age and residual 

executive function, none of the variables was significant as a mediator of either overall fluid 

cognition or residual executive function (Table S4).   

4. Discussion  

In the present analyses we used graph theoretical measures to characterize age-related 

differences in the strength and efficiency of structural brain connectivity (based on DWI) and 

functional brain connectivity (based on resting-state fMRI). Previous investigations have 

reported age-related decline in both structural and functional connectivity in relation to fluid 

cognition (Andrews-Hanna et al., 2007; Chen et al., 2009; Fjell et al., 2016; Hedden et al., 2016; 
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Li et al., 2020; Madden et al., 2017). Structural and functional measures have typically been 

treated as separate variables, however, without considering that structural connectivity may 

constrain functional connectivity (Damoiseaux and Greicius, 2009; Greicius et al., 2009; 

Hermundstad et al., 2013; Honey et al., 2007; Honey et al., 2009; Zhu et al., 2014). Although 

some findings suggest that that age-related decline in functional connectivity is dependent on 

structural connectivity (Andrews-Hanna et al., 2007; Betzel et al., 2014; Fjell et al., 2016; 

Zimmermann et al., 2016), other investigations have suggested that structural connectivity only 

weakly constrains age-related differences in functional connectivity (Fjell et al., 2017; Tsang et 

al., 2017). 

Graph theoretical measures have provided a common framework for characterizing the 

properties of structural and functional networks. Recent graph theoretical studies consistently 

observe age-related decline in structural connectivity (Gong et al., 2009; Wu et al., 2012; Zhao et 

al., 2015). Age-related differences in functional connectivity are more variable, but a decline in 

the segregation of functional modules (system segregation) has been a reliable pattern (Chan et 

al., 2014; Chong et al., 2019; Wig, 2017). However, no previous investigation has, to our 

knowledge, combined graph theoretical measures of structural and functional connectivity in the 

context of age-related differences in fluid cognition. Here, we investigated the relation between 

graph theoretical structural and functional brain network properties, in the context of age-related 

differences in fluid cognition. Our analyses were guided by three broad hypotheses: that the 

graph theoretical measure of functional system segregation would decrease with age, that 

functional system segregation would be a significant mediator of age-related decline in fluid 

cognition, and that structural connectivity would constrain the influence of functional 
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connectivity on the age-cognition relation. We also investigated the potential contributions of 

individual modules comprising the structural and functional networks.  

4.1. Age-related differences in brain connectivity and fluid cognition 

We observed an age-related decline in functional system segregation (Table 2), which 

confirmed our first hypothesis, based on previous findings reported by Chan et al. (2014) and 

Chong et al. (2019). We extend these previous findings in two ways. First, the Chan et al. and 

Chong et al. studies did not include structural brain connectivity data. Our analyses, combining 

graph theoretical measures of structural and functional data, indicate that the age-related decline 

in system segregation (at the whole-brain level) is specific to functional connectivity and is not a 

feature of structural connectivity (Table 2). Second, analyses of the individual functional 

modules demonstrate a specific contribution from the occipitoparietal module to the age-related 

decline in system segregation (Table 6 and Figure 7). This pattern corresponds to the previous 

ICA analyses of resting-state functional connectivity of this data set (Madden et al., 2017), in 

which an ICA network that included visual sensory cortex exhibited the most pronounced age-

related decline. Chan et al. proposed that the age-related decline in functional system segregation 

was more pronounced for modules comprising primarily association cortex, compared to those 

comprising primarily sensory cortex (Suarez et al., 2020). Here, the parietal nodes within the 

occipitoparietal module would be consistent with the Chan et al. results, whereas the occipital 

nodes (at least those within primary visual cortex) would not. The method for assigning nodes to 

modules differs across these studies, being data-driven here and defined by the results of an 

independent data set (Power et al., 2011) in the Chan et al. report, which may account for the 

different regional pattern. 
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Our second hypothesis was that functional system segregation would mediate the relation 

between age and fluid cognition. Previous analyses of this data set with ICA-based measures of 

connectivity (Madden et al., 2017), as well as other studies of brain connectivity not derived 

from graph theory (Chen et al., 2009; Fjell et al., 2016; Hedden et al., 2016; Li et al., 2020; 

Madden et al., 2017), have demonstrated that both structural and functional connectivity 

contribute as statistical mediators of the relation between age and cognitive performance. 

Investigations using graph theory have yielded some evidence that specific network properties, 

such as system segregation, contribute to age-related differences in cognition. Chan et al. (2014) 

and Chong et al. (2019), for example, both reported a positive relation between cognitive ability 

and graph theoretical measures of module distinctiveness, with age controlled statistically. 

Bagarinao et al. (2019) found that a graph theoretical measure of network integrity was a 

statistical mediator of the relation between age and global cognitive functioning. We extend 

these previous findings by showing that a specific, graph theoretical feature of resting-state 

functional modules, system segregation, has a mediating role in age-related cognitive decline. 

When the six graph theoretical measures that were age-sensitive (structural global efficiency, 

structural local efficiency, structural average strength, structural within-module strength, 

structural between-module strength, and functional system segregation) were included as 

potential mediators of the relation of age to the overall cognitive and residual executive function 

measures, only functional system segregation was a mediator in a model with residual executive 

function as the outcome measure (Figure 4; Table 3, Model 2). That is, the relation of age to 

residual executive function was indirect, operating through functional system segregation. 

The path coefficient for the relation of functional system segregation to residual 

executive function, covaried for age (i.e., the b path in Table 3, Model 2), was positive, 
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consistent with the previous findings indicating an underlying positive relation between the 

distinctiveness of functional modules and cognition (Bagarinao et al., 2019; Chan et al., 2014; 

Chong et al., 2019). The mediating effect of functional system segregation, however, was 

specific to residual executive function, even though the age-related effect size (r) for overall 

fluid cognition was much greater than the effect size for residual executive function (Figure 3). 

Thus, the mediating effect of system segregation is not driven by the age-related effect size of 

the cognitive outcome variable.  

The pattern of age-related differences in the graph theoretical measures of structural 

connectivity were generally consistent with previous findings. We observed, consistent with 

earlier studies (Gong et al., 2009; Wu et al., 2012; Zhao et al., 2015), that the efficiency and 

strength of structural connectivity declined with age (Table 2). We also obtained specific 

regional effects of structural connectivity (Table 5), with prominent contributions from the right 

frontal module to age-related differences in average strength, within-module strength, and 

system segregation (Zhao et al., 2015). The left occipitoparietal module exhibited both a decline 

in between-module strength and an increase in system segregation. Interestingly, the overall 

model for age-related differences in structural system segregation was significant with the 

connectivity measures averaged per module (Table 5), whereas the initial analysis of the whole-

brain measures of structural connectivity, averaging across all nodes, did not exhibit an age-

related decline in system segregation (Table 2). These results appear to reflect an age-related 

decline in structural system segregation for the right frontal module, combined with an age-

related increase for the left occipitoparietal module (Table 5), which may have cancelled each 

other in the whole-brain analysis.  
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The results provided limited support for our third hypothesis, that structural brain 

connectivity would constrain the pattern of functional connectivity. We based our prediction on 

previous findings (Andrews-Hanna et al., 2007; Betzel et al., 2014; Chen et al., 2009; Fjell et al., 

2016; Zimmermann et al., 2016) suggesting that age-related differences in functional 

connectivity were dependent on structural connectivity, in line with data from younger adults 

(Damoiseaux and Greicius, 2009; Hermundstad et al., 2013; Honey et al., 2007; Honey et al., 

2009). Having demonstrated a significant influence of functional system segregation in the 

relation between age and residual executive function (Figure 4; Table 3, Model 2), we asked 

whether aspects of structural connectivity influenced the relation of age to functional system 

segregation. The results, however, indicated that none of the graph theoretical measures of 

structural connectivity was a significant mediator of the age-related decline in functional system 

segregation (Table 4). But we also explored the raw structural and functional connectivity 

matrices, from which the graph theoretical measures were derived. In this exploratory analysis 

we restricted the matrices to those cells with a structural connection between nodes. At this raw 

matrix level, the relation between structural and functional connectivity declined with age 

(Figure 5, Panel C). This suggests that age-related decline in structural connectivity may 

contribute to decreased functional connectivity among regions, although a causal effect cannot 

be inferred from this correlation. Overall, our findings are in line with those of Fjell et al. (2017), 

who proposed that structural connectivity provided a measurable though relatively weak 

constraint on age-related differences in functional connectivity.  

4.2. Limitations 

Graph theory provides a theoretical and measurement context that can encompass 

structural and functional brain connectivity data, but alternative methods exist for defining nodes 
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and comparing structural and functional modules. Different methods of defining nodes, 

partitioning modules, and many other stages within the analysis pipeline, will influence the 

results (Botvinik-Nezer et al., 2020; Gargouri et al., 2018; Sporns and Betzel, 2016; Zalesky et 

al., 2010). In our primary analyses, we defined a single modular structure, based on the 

participant-averaged structural and functional correlation matrices (Figure 2), but we allowed the 

module topology to differ between the structural and functional domains. We performed 

additional analyses with two alternative versions of this method of defining modules 

(Supplementary Material). In the first approach, the set of structural modules that we used in the 

primary analyses, defined from the participant-averaged correlation matrix, were applied to both 

the structural and functional data. In the second approach, the structural modules for each 

individual were applied to that individual’s structural and functional data.  

As noted in Section 3.2.4. (Alternative network partitions), the results from the first 

approach were largely consistent with the results reported in the main text, in that the functional 

data yielded an age-related difference only for system segregation, and functional system 

segregation was the only significant mediator of the age-related decline in residual executive 

function. The second approach, however, with individually varying structural modules, did not 

yield the age-related decline in within- and between-module structural connectivity that we 

observed in the main analyses. With the individually varying structural modules, functional 

system segregation continued to exhibit age-related decline but did not mediate the relation 

between age and residual executive function. Thus, our findings for functional connectivity were 

consistent regardless of whether the functional data were based on structural or functional 

modules, when the modules were defined from the participant-averaged matrices. Participant-

varying modules yielded different results.   
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Mediation analysis is a form of ordinary linear regression that is designed to identify the 

causal relations among variables (Hayes, 2013) in cross-sectional data. By defining the patterns 

of shared and unique variance across individuals we can interpret age-related differences, but 

these individual differences in cross-sectional data are not the same as change over time, which 

requires longitudinal analysis (Hofer and Sliwinski, 2001; Lindenberger et al., 2011). A 

limitation of longitudinal analysis is that scores are correlated across measurement occasions, 

and as a result the systematic variance in change over time may be small relative to the variance 

at each measurement occasion (Salthouse, 2011; Salthouse and Nesselroade, 2002). Converging 

information from cross-sectional and longitudinal studies would provide a more complete 

account of age-related effects. 

4.3. Conclusion 

From the application of graph theoretical analyses, these results demonstrate that 

structural and functional brain networks exhibit different patterns of age-related decline, that 

functional connectivity influences age-related differences in one form of fluid cognition 

(executive function), and that structural connectivity exerts a limited constraint on age-related 

decline in functional connectivity.  

Age-related differences in structural connectivity were evident in the majority of the 

graph theoretical measures. Age-related decline was significant for whole-brain efficiency and 

strength of connectivity among all nodes, as well as in within- and between-module strength, 

though not in system segregation. Functional connectivity, in contrast, exhibited age-related 

decline only in system segregation, reflecting a decrease in the distinctiveness among modules 

with increasing age. Individual modules contributed prominently to the structural and functional 

age-related effects: right frontal and left occipitoparietal modules for age-related decline in 
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structural connectivity, and a bilateral occipitoparietal module for age-related decline in 

functional system segregation. Mediation analyses demonstrated that functional system 

segregation had a specific influence on age-related decline in executive function, distinct from 

the fluid cognitive abilities shared by perceptual speed, executive function, and memory. The 

age-related differences in the graph theoretical measures of structural and functional connectivity 

were largely independent. In the underlying raw data matrices, however, the results suggested 

some degree of anatomical constraint on functional connectivity. For pairs of nodes with a 

structural connection, age-related decline in structural and functional connectivity were 

correlated. Overall, these findings suggest that specific aspects of structural and functional brain 

networks interact to define the pattern of age-related decline in fluid cognition.   
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Table 1 

Participant Characteristics 

Variable             M        SD            Min         Max       r with age  

Education (years) 16.80 2.05 12.0 20.0 0.42*** 

Color Vision 13.87 0.41 12.0 15.0 -0.23* 

Visual acuity -0.06 0.12 -0.23 0.34    0.33*** 

BDI 2.35 2.54 0.0 9.0 0.15 

MMSE 29.09 0.97 27.0 30.0 -0.23* 

Vocabulary 55.99 6.33 38.0 66.0 0.16 

Note. n = 143. Color Vision = score on the Dvorine plates (Dvorine, 1963). Visual acuity is Log 

minimum angle of resolution (MAR). Log MAR of 0 corresponds to Snellen 20/20, with 

negative values corresponding to better resolution. Thus, the positive correlation for acuity 

represents age-related decline in this measure. BDI = Beck Depression Inventory (Beck, 1978); 

MMSE = Mini Mental State Exam (Folstein et al., 1975). Vocabulary is the raw score on the 

vocabulary subtest of the Wechsler Adult Intelligence Scale (Wechsler, 1997). Significance 

levels are Bonferroni-corrected for six comparisons. 

* p < 0.05 (corrected) 

** p < 0.01 (corrected) 

*** p < 0.001 (corrected) 
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Table 2 

Whole-Brain Graph Theoretical Measures             

                                                                         M                        SD             r with age  

Structural Data 

Global Efficiency 51.25262   5.84513 -0.30976** 

Local Efficiency 9.35920   0.87052 -0.32981*** 

Strength 2341.00000 264.91236 -0.24684* 

Between-Module Strength  8.47879   1.01790 -0.32609*** 

Within-Module Strength 59.67510  5.23890 -0.32179*** 

System Segregation 0.85780  0.01285 0.11109 

Functional Data 

Global Efficiency 0.31803  0.04720 0.17434 

Local Efficiency 0.24162 0.09175 0.17274  

Strength 63.54536   19.73774 0.16449 

Between-Module Strength  0.27391    0.09351 0.20087 

Within-Module Strength 0.44287     0.09511 0.09610 

System Segregation 0.39044   0.06728 -0.37299*** 

Note. n = 143. Significance levels were Bonferroni-corrected for the six comparisons within each 

type of data.       

* p < 0.05 (corrected) 

** p < 0.01 (corrected) 

*** p < 0.001 (corrected) 
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Table 3 

Mediation of Age-Cognition by Functional System Segregation and Structural Graph Variables 

                               Effect          SE                 t                  p              Lower CI     Upper CI         

Model 1: x = age; m = six whole-brain structural and functional graph theory measures that showed significant correlation with age; y 

= overall fluid cognition score 

Age effect (a path) 

 Structural global efficiency -0.0950   0.0251  -3.7778  0.0002   -0.1447  -0.0453 

 Structural local efficiency -0.0151 0.0037   -4.0815 0.0001 -0.0224 -0.0078 

 Structural average strength  -3.4767   1.1646 -2.9852  0.0034 -5.7795  -1.1738 

 Structural within-module strength -0.0886   0.0225   -3.9379   0.0001  -0.1331   -0.0441 

 Structural between-module strength -0.0176  0.0044  -4.0400   0.0001  -0.0263   -0.0090 

 Functional system segregation -0.0013  0.0003  -4.7420   0.0000  -0.0019 -0.0008 

Mediator to outcome (b path) 

 Structural global efficiency 0.0282  0.0281  1.0034 0.3175  -0.0274  0.0838 

 Structural local efficiency -0.1778    0.1670   -1.0649    0.2889   -0.5082  0.1525 

 Structural average strength  -0.0005  0.0007   -0.6793   0.4981   -0.0018   0.0009 

        Table 3 continues 
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Table 3, continued 

 Structural within-module strength -0.0066   0.0298  -0.2226    0.8242   -0.0655   0.0523 

 Structural between-module strength 0.0471  0.1302  0.3621   0.7178   -0.2103   0.3046 

 Functional system segregation 0.0713   0.8840    0.0807  0.9358   -1.6773   1.8199 

Total effect for age (c path)                    -0.0351  0.0029 -12.1247  0.0000   -0.0408  -0.0294 

Direct effect for age (c’ path)                    -0.0363 0.0034 -10.6879  0.0000 -0.0430 -0.0296 

Mediation effect (a x b path interaction) 

   Structural global efficiency -0.0027     0.0028 —              — -0.0088  0.0024 

 Structural local efficiency 0.0027     0.0027       —              — -0.0023   0.0086  

 Structural average strength  0.0016     0.0024       —  — -0.0028  0.0069 

  Structural within-module strength 0.0006     0.0026     —              — -0.0047  0.0058  

 Structural between-module strength -0.0008     0.0021      —              — -0.0052   0.0036 

 Functional system segregation -0.0001     0.0011 —              —  -0.0025 0.0020  

Model 2: x = age; m = six whole-brain structural and functional graph theory measures that showed significant correlation with age; y 

= residual executive function score 

       Table 3 continues 
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Table 3, continued 

Age effect (a path) 

 Structural global efficiency -0.0950   0.0251  -3.7778  0.0002   -0.1447  -0.0453 

 Structural local efficiency -0.0151 0.0037   -4.0815 0.0001 -0.0224 -0.0078 

 Structural average strength  -3.4767   1.1646 -2.9852  0.0034 -5.7795  -1.1738 

 Structural within-module strength -0.0886   0.0225   -3.9379   0.0001  -0.1331   -0.0441 

 Structural between-module strength -0.0176  0.0044  -4.0400   0.0001  -0.0263   -0.0090 

 Functional system segregation -0.0013  0.0003  -4.7420   0.0000  -0.0019 -0.0008 

Mediator to outcome (b path) 

 Structural global efficiency 0.0103 0.0201 0.5135 0.6084  -0.0295  0.0502 

 Structural local efficiency -0.0247 0.1198   -0.2063  0.8369 -0.2617   0.2122 

 Structural average strength -0.0006   0.0005 -1.3245 0.1876 -0.0016 0.0003 

  Structural within-module strength 0.0298   0.0214 1.3947  0.1654  -0.0125  0.0720 

 Structural between-module strength -0.0045  0.0934 -0.0479 0.9619 -0.1891   0.1802 

 Functional system segregation 1.6494  0.6340   2.6014  0.0103 0.3952   2.9035 

Total effect for age (c path) -0.0062 0.0021  -2.9198  0.0041   -0.0104    -0.0020  

       Table 3 continues 
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Table 3, continued 

Direct effect for age (c’ path) -0.0030  0.0024   -1.2320   0.2201  -0.0078   0.0018 

Mediation effect (a x b path interaction) 

 Structural global efficiency -0.0010  0.0019 —              — -0.0048 0.0028 

 Structural local efficiency 0.0004   0.0019 —              — -0.0034   0.0041 

 Structural average strength  0.0022 0.0020  —              — -0.0011 0.0067 

  Structural within-module strength -0.0026  0.0022 —              — -0.0075 0.0012 

 Structural between-module strength          0.0001 0.0019 —              — -0.0034 0.0042 

 Functional system segregation       -0.0022 0.0010  —              — -0.0045 -0.0004 

Note. Due to three participants with missing psychometric data, n = 140. a, b, c, = paths in mediation model as illustrated in Figure 4, 

with x as predictor variable, y as outcome variable, and m as mediator; a = path from predictor to mediator; b = path from mediator to 

outcome, controlling for a path; c = total effect of predictor; c’ = direct effect of predictor, controlling for mediator; ab = interaction of 

a and b paths representing indirect influence of x as mediated by m; effect  = regression coefficient; SE = standard error; Lower/Upper 

CI = lower/upper bounds of 95% confidence intervals, estimated from bootstrap sampling with 10,000 samples. Significant effects are 

presented in bold. 
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Table 4 

 Mediation of Age-Functional System Segregation by Whole-Brain Structural Graph Variables 

         Effect          SE                 t                  p            Lower CI     Upper CI         

x = age; m = whole-brain structural graph variables; y = functional system segregation 

Age effect (a path) 

 Structural global efficiency -0.0962   0.0249 -3.8685  0.0002  -0.1453   -0.0470 

 Structural local efficiency -0.0152 0.0037  -4.1483  0.0001  -0.0225  -0.0080 

 Structural average strength  -3.4730 1.1482   -3.0246  0.0030  -5.7430  -1.2030 

 Structural within-module strength -0.0895  0.0222  -4.0357    0.0001  -0.1334   -0.0457 

 Structural between-module strength -0.0176   0.0043   -4.0959   0.0001  -0.0261  -0.0091 

Mediator to outcome (b path) 

 Structural global efficiency 0.0016  0.0027   0.5960 0.5522  -0.0037  0.0070 

 Structural local efficiency 0.0010  0.0160  0.0608  0.9516  -0.0307  0.0327 

 Structural average strength  -0.0000   0.0001  -0.5598 0.5765   -0.0002 0.0001 

  Structural within-module strength -0.0003   0.0029   -0.1036  0.9176  -0.0060   0.0054 

 Structural between-module strength -0.0085  0.0126  -0.6723   0.5025   -0.0333 0.0164  

       Table 4 continues 
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Table 4, continued 

Total effect for age (c path)                    -0.0013   0.0003  -4.7735 0.0000  -0.0019  -0.0008 

Direct effect for age (c’ path)                    -0.0015  0.0003  -4.7889    0.0000   -0.0021  -0.0009 

Mediation effect (a x b path interaction) 

   Structural global efficiency -0.0002   0.0003 —              — -0.0007  0.0003 

 Structural local efficiency -0.0000  0.0002  —              — -0.0005  0.0004  

 Structural average strength        0.0001 0.0002  —  — -0.0003  0.0006 

  Structural within-module strength 0.0000  0.0003     —              — -0.0005  0.0005  

 Structural between-module strength 0.0001  0.0002     —              — -0.0003 0.0007   

Note. n = 143. a, b, c, = paths in mediation model as illustrated in Figure 4, with x (age) as the predictor variable, y (functional system 

segregation) as the outcome variable, and m (whole-brain structural graph variables) as mediators; a = path from predictor to mediator; 

b = path from mediator to outcome, controlling for a path; c = total effect of predictor; c’ = direct effect of predictor, controlling for 

mediator; ab = interaction of a and b paths representing indirect influence of x as mediated by m; effect  = regression coefficient; SE = 

standard error; Lower/Upper CI = lower/upper bounds of 95% confidence intervals, estimated from bootstrap sampling with 10,000 

samples. Significant effects are presented in bold. 
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Table 5 

Age-Related Effects for Individual Structural Modules in Graph Theoretical Measures 

 β SE t     

Local Efficiency F(8, 134) = 3.98* 

 Intercept  104.29229  18.92983   5.51*** 

 Left Occipitoparietal  2.88457   2.39740   1.20 

 Right Sensorimotor  -1.83675  3.09747    -0.59 

 Left Temporal  -2.17130  1.41775  -1.53 

 Left Frontal  3.88666   3.42036   1.14 

 Right Temporal  -2.15465   1.44363   -1.49 

 Right Occipitoparietal  0.54483  1.92192   0.28 

 Right Frontal  -6.18217   3.19185    -1.94 

 Left Sensorimotor  -1.35082   3.32433   -0.41 

Average Strength F(8, 134) = 6.57 *** 

 Intercept  81.18864   13.48654   6.02*** 

 Left Occipitoparietal  0.00190  0.00734  0.26 

 Right Sensorimotor  -0.00586    0.01185   -0.49 

 Left Temporal  -0.00004   0.00907   -0.00 

 Left Frontal  0.00534   0.01260   0.42 

 Right Temporal  0.02161  0.00811  2.67* 

 Right Occipitoparietal  -0.01011   0.00691   -1.46 

 Right Frontal  -0.03991  0.01255   -3.18** 

       Table 5 continues 
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Table 5, continued 

Left Sensorimotor  0.00977    0.01066       0.92 

Between-Module Strength F(8, 134) = 5.01*** 

 Intercept  84.18710   14.13182  5.96 

 Left Occipitoparietal  -10.41637  3.24369  -3.21** 

 Right Sensorimotor  1.40800  2.89122      0.49 

 Left Temporal  -1.12334  1.68364   -0.67 

 Left Frontal  -5.82625   4.08627  -1.43 

 Right Temporal  -2.34705  1.67931   -1.40 

 Right Occipitoparietal  7.41496  3.14906   2.35 

 Right Frontal  7.64155   3.95221     1.93 

 Left Sensorimotor  -0.22232   2.09323  -0.11 

Within-Module Strength F(8, 134) = 6.41*** 

 Intercept  147.94979   18.03139     8.21*** 

 Left Occipitoparietal  -0.35574  0.34412   -1.03 

 Right Sensorimotor  -0.37518    0.38439  -0.98 

 Left Temporal  0.16945   0.19609   0.86 

 Left Frontal  -0.30459   0.57252  -0.53 

 Right Temporal  0.11456   0.19559     0.59 

 Right Occipitoparietal  -0.27214   0.31227   -0.87 

 Right Frontal  -2. 00110  0.61113   -3.27** 

 Left Sensorimotor  0.21976   0.25177  0.87   

        Table 5 continues 
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Table 5, continued 

System Segregation F(8, 134) = 7.52*** 

 Intercept  35.72535   96.04730   0.37  

 Left Occipitoparietal  306.21984   100.15202   3.06*  

 Right Sensorimotor  -111.12542   69.84089    -1.59  

 Left Temporal  144.24193  106.03042  1.36  

 Left Frontal  142.51680   110.71806  1.29  

 Right Temporal  158.26074     92.95610     1.70  

 Right Occipitoparietal  -360.44381   143.11664  -2.52   

 Right Frontal  -397.03790   92.57621   -4.29***  

 Left Sensorimotor  114.35982  83.57336     1.37 

Note. n = 143. In each model, the eight structural modules were simultaneous predictors of years 

of age. Significance levels were Bonferroni-corrected for the five models tested across the five 

graph theoretical measures.  

* p < 0.05 (corrected) 

** p < 0.01 (corrected) 

*** p < 0.001 (corrected) 
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Table 6 

Age-Related Effects for Individual Functional Modules in Graph Theoretical Measures 

 β SE t     

Local Efficiency F(6, 136) = 1.80 

 Intercept  41.31116  5.146996      8.03***       

 Sensorimotor  56.07201  55.46622  1.01 

 Posterior Default Mode 44.73170  64.13577  0.70        

 Limbic  30.23440  60.34445  0.50 

 Auditory  -56.09747   59.58090  -0.94       

 Occipitoparietal  -117.48682   63.71440  -1.84       

 Anterior Default Mode 66.17992  51.26892    1.29  

Average Strength F(6, 136) = 1.67 

 Intercept  43.68244  6.90759   6.32***        

 Sensorimotor  0.10599  0.18766  0.56   

 Posterior Default Mode 0.06769   0.21881      0.31  

 Limbic  0.02701  0.20713   0.13  

 Auditory  -0.32386   0.19929   -1.63 

 Occipitoparietal  -0.08675     0.21428   -0.40 

 Anterior Default Mode 0.25262    0.14716   1.72     

Between-Module Strength F(6, 136) = 1.90 

 Intercept  43.22746  6.32220     6.84*** 

 Sensorimotor  123.32941  71.23761   1.73       

        Table 6 continues 
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Table 6, continued 

 Posterior Default Mode -34.07876   58.51800  -0.58  

 Limbic  33.01096   79.79670   0.41       

 Auditory  -68.39300   56.56471  -1.21 

 Occipitoparietal  -7.62831  71.276211  -0.11 

 Anterior Default Mode -24.12699   66.81465  -0.36  

Within-Module Strength F(6, 136) = 2.39 

 Intercept  50.117151   9.61299  5.21*** 

 Sensorimotor  12.563806   19.23348   0.65 

 Posterior Default Mode 9.630588   21.64333  0.44 

 Limbic  7.976398  21.98047  0.36  

 Auditory  -32.700663    21.31006  -1.53 

 Occipitoparietal  -42.584382  19.93200   -2.14 

 Anterior Default Mode 37.563381 15.59978     2.41 

System Segregation F(6, 136) = 7.15*** 

 Intercept  82.352863  8.99377   9.16***  

 Sensorimotor  -18.320810  18.17476   -1.01  

 Posterior Default Mode 37.084187  17.61200  2.11   

 Limbic  -33.713374  18.21081   -1.85 

 Auditory  -30.072195   19.90084    -1.51 

 Occipitoparietal  -63.922704  15.18916   -4.21*** 

 Anterior Default Mode 12.781443   21.30350   0.60    

        Table 6 continues 
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Table 6, continued 

Note. n = 143. In each model, the six functional modules were simultaneous predictors of years 

of age. Significance levels were Bonferroni-corrected for the five models tested across the five 

graph theoretical measures.  

* p < 0.05 (corrected) 

** p < 0.01 (corrected) 

*** p < 0.001 (corrected)  
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Figure Captions 

Figure 1. Graph theoretical measures. Strength: the number of white matter streamlines, 

estimated from DWI, between nodes (anatomical regions of interest), for structural data, or the 

correlation of resting-state time series, between nodes, for functional data. Efficiency: the 

number of edges that must be traversed to connect two nodes, where fewer = better. System 

Segregation: the degree to which modules (sets of highly connected nodes) are distinct from each 

other, expressed as the ratio of within-module connections to between-module connections. See 

online version for color. 

Figure 2. Image processing pipeline. See online version for color. 

Figure 3. Cognitive measures as a function of age; n = 143. Fluid cognition is the factor score 

for all nine cognitive tests, partialed for gender and WAIS vocabulary (A). Factor scores for 

executive function (B), memory (C), and speed (D), are each based on three tests and then 

partialed for the six remaining tests, plus gender and WAIS vocabulary, Bonferroni corrected for 

four comparisons. See online version for color. 

Figure 4. Mediation model for residual executive function, with mediators in parallel. 

Significant mediators and effects are presented in bold. 

Figure 5. Connectivity in the raw data matrices, for those pairs of nodes with a positive number 

of white matter streamlines connecting them. Structural connectivity (A); functional connectivity 

(B), and the correlation between structural and functional connectivity as a function of age (C). 

See online version for color. 

Figure 6. Modules estimated from the averaged structural connectivity matrix. See online 

version for color. 
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Figure 7. Modules estimated from the averaged functional connectivity matrix. See online 

version for color.  
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Highlights 

� Graph theoretical measures characterize the topology of brain connectivity  

� Age-related decline in strength and efficiency of structural brain connectivity 

� Age-related decline in functional system segregation (module distinctiveness) 

� Functional system segregation mediates age-related decline in executive function 

� Structural connectivity exerts a limited constraint on functional connectivity  
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