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Abstract
We used graph theoretical measures to investigatbypothesis that structural brain
connectivity constrains the influence of functionahnectivity on the relation between age and
fluid cognition. Across 143 healthy, community-died adults 19-79 years of age, we
estimated structural network properties from diffasweighted imaging (DWI) and functional
network properties from resting-state functionabmetic resonance imaging (fMRI). We
confirmed previous reports of age-related declimehe strength and efficiency of structural
networks, as well as in the connectivity strengithiw and between structural network modules.
Functional networks, in contrast, exhibited agetesl decline only in system segregation, a
measure of the distinctiveness among network medlging was associated with decline in a
composite measure of fluid cognition, particuladgts of executive function. Functional system
segregation was a significant mediator of age-eéldiecline in executive function. Structural
network properties did not directly influence tlgeaelated decline in functional system
segregation. The raw correlational data underlyireggraph theoretical measures indicated that
structural connectivity exerts a limited constraintage-related decline in functional

connectivity.

Keywords: graph theory; system segregation; brarmectome; magnetic resonance imaging;

executive function; statistical mediation
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1. Introduction

1.1 Age-related differences in brain connectivity ad cognition. Fluid cognitive
abilities, which depend on the rapid and flexibberination of attention and memory, decline
during healthy aging, relative to knowledge- angderkise-based (crystallized) abilities, which
often exhibit age constancy (Craik and Bialystd)& Kramer et al., 1994; Park et al., 2002;
Salthouse, 1996). Previous neuroimaging studids positron emission tomography (PET),
structural magnetic resonance imaging (MRI), anttfional MRI (fMRI) have demonstrated
that aging is associated with alterations in bsaincture and function, including a decrease in
the integrity of white matter and decrease in thrcfional connectivity among cortical regions,
which may contribute to the age-related declinfuidl cognition (Bennett and Madden, 2014;
Fjell et al., 2016; Fjell and Walhovd, 2010; Grad17; Hedden et al., 2016; Madden et al.,
2017; Ruiz-Rizzo et al., 2019; Salat, 2011). Brgalbth structural connectivity (usually
assessed from the integrity of the white mattelnyways connecting cortical regions) and
functional connectivity (usually assessed fromdbeelation of resting-state fMRI time series
between cortical regions) tend to decrease witlessing age (Damoiseaux, 2017; Ferreira and
Busatto, 2013; Sala-Llonch et al., 2015). The agated decline in structural connectivity is
consistent across studies. However, the functiomahectivity between cortical regions may be
indirect or rely on multiple white matter pathwgiZamoiseaux and Greicius, 2009; Honey et
al., 2009), and as a result, both increases aneaswes in functional connectivity with age have
been observed across selected cortical regiongdBettal., 2014; Biswal et al., 2010; Song et
al., 2014; Tomasi and Volkow, 2012).

Studies of younger adults suggest that structunahectivity constrains functional

connectivity, though these studies have focusedaily on the medial prefrontal and posterior
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cingulate regions comprising the default mode netwWGreicius et al., 2009; Hermundstad et
al., 2013; Honey et al., 2007; Zhu et al., 2014tvibrks of structural and functional
connectivity are not isomorphic, however, and tendiverge in higher-order association
cortical regions (Batista-Garcia-Ramo and Fernavdecia, 2018; Misiet al., 2016;
Vazquez-Rodriguez et al., 2019). Under the besirofimstances, structural connectivity
accounts for 50% of the variance in functional etivity(Suarez et al., 2020). In the first study
to combine measures of structural and functionaheativity in the context of aging, Andrews-
Hanna et al. (2007) reported age-related declifieriational connectivity strength of default
mode cortical regions (e.g., posterior cingulaté mredial prefrontal regions) and a dorsal
attention system (e.g., intraparietal sulcus aadtél eye field). Andrews-Hanna and colleagues
also found that the decline in functional connettiwas associated with declines in both white
matter integrity and fluid cognition. Later studiesve confirmed that structural and functional
connectivity are statistical mediators of the rielabetween age and fluid cognition (Chen et al.,
2009; Fjell et al., 2016; Hedden et al., 2016;tLale, 2020; Madden et al., 2017).

The relation between age-related effects for stinattand functional connectivity,
however, is less clear. Andrews-Hanna et al. (26@d)Chen et al. (2009) both reported a
positive relation between functional connectivihdaegional white matter integrity (fractional
anisotropy; FA) for older adults. Zimmerman et(2016) proposed that a specific pattern of
structural-functional connectivity coupling predidtage more reliably than did either form of
connectivity alone. Fjell et al. (2016) observedttbtructural connectivity was a better predictor
of longitudinal decline in executive function thiamctional connectivity. In contrast, Fjell et al.
(2017) found that functional connectivity withinsgamically defined white matter tracts was not

consistently higher than functional connectivityrégions outside of the tracts. Further, the
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cross-sectional age-related trajectories diffecgdsfructural and functional connectivity, and
these measures changed in a largely independememaaross a 3.3 year longitudinal span,
leading Fjell et al. (2017) to conclude that stmuat connectivity only weakly constrained the
age-related differences in functional connectiv@imilarly, Tsang et al. (2017) found that cross-
sectional age-related differences in structuralfandtional connectivity were unrelated to each
other.

1.2. Graph theoretical measures of brain connectity. As noted previously, structural
connectivity is typically defined from some micmsgitural property of cerebral white matter
pathways, such as FA or the number of white matteamlines, derived from tractography. In
contrast, functional connectivity is based on tbealation of fMRI time series, often measured
during a resting state, obtained either from anatalhy or functionally defined cortical regions
of interest (ROIs), or from the whole brain in viwise analyses (e.g., independent component
analysis; ICA). As a result, however, the varialdemprising structural and functional
connectivity data have qualitatively different me@snent properties, which may contribute to
the inconsistent findings that have been repo@dph theory (Rubinov and Sporns, 2010;
Rubinov and Sporns, 2011; Sporns and Betzel, 2846tns et al., 2004; van den Heuvel and
Sporns, 2013) provides a potentially useful conegpind measurement framework in which to
investigate age-related differences in both stmattand functional connectivity. In graph theory,
the brain is viewed as a network of nodes withcstmal or functional connections (edges)
between them. Nodes are ROIs that can be defitleer @inatomically, as a set of cortical and
subcortical gray matter regions (Desikan et al0&2Jao et al., 2013; Tzourio-Mazoyer et al.,
2002), or functionally, as regions with consisteatterns of task-related or resting-state activity

(Laird et al., 2011; Power et al., 2011; Wig et 2014; Yeo et al., 2011). The matrix of all
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possible connections between pairs of nodes reqieiee whole-brain network. If a network
(either structural or functional) is not randonenht will comprise a number of communities, or
modules, which are distinct sets of nodes thahagiely interconnected.

To date, MRI findings, derived primarily from yoger adults, suggest that brain
structure and function exhibit characteristicaltyadl-world properties, expressed as a limited
number of modules that have high within-module emtinity, and fewer long-range
connections across modules (Bassett and BullmO@f;Bullmore and Sporns, 2009). These
small-world properties, especially the presencmodlules, are hypothesized to be an
evolutionary adaptation that maximizes the effickenf responding to task demands and
resilience to focal damage (Achard and Bullmor&72rossley et al., 2013; Méand Sporns,
2016; Wig, 2017). Graph theoretical measures pegifine-grained characterization of
different properties of connectivity both withindahetween modules (Figure 1). In addition to
the efficiency of information transmission (the rhen of intervening edges), the strength of
connectivity can be defined for both structuraled@t.g., the number of streamlines between
nodes) and functional data (e.g., the strength@tbrrelation between nodes). Further, system
segregation, defined as the relative preponderaiwaghin-module connections to between-
module connections, reflects the degree to whictutes are distinct or differentiated from each
other.

/— Insert Figure 1 about here —/

Previous MRI investigations applying graph theicedtmeasures to age-related
differences in functional brain connectivity haveeh concerned primarily with resting-state
connectivity. Age-related trends in functional netlwproperties are not entirely consistent, but

findings from several studies suggest that funeti@onnectivity between modules is better
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preserved as a function of age than within-modaleectivity (Damoiseaux, 2017; Sala-Llonch
et al., 2015; Wig, 2017). As a result, functionaldules become less distinct or separate with
increasing age, expressed in graph theoreticaktasmlecreased modularity and system
segregation. Chan et al. (2014), for example, heperted that system segregation in resting-
state fMRI data declined with increasing age inthgaadults 20-89 years of age, reflecting a
greater age-related decrease in the strength binamodule functional connectivity relative to
between-module connectivity, particularly for maghiln association cortex. This pattern of
functional connectivity was more prominent for widuals over 50 years of age and was
predictive of long-term memory function, indepenitienf age. Chong et al. (2019) reported a
longitudinal decline in system segregation, as @a&l& cross-sectional association between
worse cognitive performance and lower module segieg and distinctiveness in older adults.
Several other investigations have reported agdectidecline in the distinctiveness of modules,
based on measures of the strength and efficienaytbin- and between-module connectivity
(Bagarinao et al., 2019; Betzel et al., 2014; Gaal.£2014; Geerligs et al., 2015; Grady et al.,
2016; Song et al., 2014; Spreng et al., 2016). &ye¢he graph theoretical investigations of
resting-state functional connectivity support tba@aept of age-related neural dedifferentiation,
the idea that aging is associated with a declirta@rspecialization or separation of functional
neural modules (Geerligs et al., 2014; Goh, 20&tk Bt al., 2004).

Graph theoretical investigations of age-relatéfitinces in brain structure more
consistently report age-related decline in striadtaonnectivity, with some variation in the
degree to which strength and efficiency declinee Titst application of graph theoretical
measures to this issue (Gong et al., 2009) fouat] itha sample of 95 healthy adults 19-85

years of age, the overall structural connectivitgrgth between cortical nodes declined with
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age, whereas the global efficiency of the connasti@e., the shortest path between any two
nodes in the whole network) was constant. Age-edldifferences were evident, however, in the
efficiency of nodes within specific regions, subhttthe efficiency of nodes in occipital and
parietal cortical regions decreased with age, wdtetiee efficiency of nodes in frontal and
temporal regions increased. Zhao et al. (2015)rteg@ different pattern, in which both the
global and local efficiency of network connecti¢bhsth within-module and between-module)
decreased with increasing adult age, particularlyilateral prefrontal and temporal regions. Wu
et al. (2012) found that structural global effi@grdeclined with increasing age to a greater
extent than did local efficiency, and that fewetween-module connections were evident in the
older adults’ data, yielding a more localized aadregated network.

1.3. Age-related differences in the interaction adtructural and functional
connectivity. A critical issue, which we address in this reseaickhe interactive influence of
structural and functional connectivity on age-rethtlifferences in fluid cognition. Previous
studies of these different forms of connectivitythe context of aging (Andrews-Hanna et al.,
2007; Chen et al., 2009; Fjell et al., 2016; Hedeteal., 2016; Madden et al., 2017), have most
often treated structural and functional connegtiviieasures as parallel or separate variables and
did not test their potential interactions. Applyigaph theoretical methods, Betzel et al. (2014)
observed that nodes with direct (efficient) struatwonnections exhibited relatively little age-
related change in functional connectivity, wheneades with less efficient structural
connections were more likely to exhibit an agetszlancrease in functional connectivity. This
pattern suggests that the age-related decreasadtidnal system segregation reported in other
studies (Chan et al., 2014; Chong et al., 2019) beag result of decreased structural efficiency,

with functional connections between structurallyodinnected regions relying on indirect paths.
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In this investigation, we obtained graph theoedtineasures for both structural and
resting-state functional connectivity, to determihe influence of these variables on age-related
differences in fluid cognition. In a previously pighed analysis of this cross-sectional data
(Madden et al., 2017), we established that measidresecutive function exhibited age-related
decline beyond that associated with perceptualdssped memory. Estimates of both structural
and functional connectivity exhibited age-relatedlthe, and functional connectivity within
sensorimotor regions (visual, motor, and basal i@ftigalamus) mediated the relation between
age and executive function. However, as noted glibeesarlier investigation did not test the
potential influences between structural and fumeticonnectivity, and the ICA methods used to
define functional networks did not assess betwestwark connectivity.

We extend the earlier findings by using graph tegcal measures to characterize
different aspects of network connectivity: strengfficiency, and system segregation, for both
structural and functional data, with three overarghypotheses. First, in the functional
connectivity data, we expected to confirm previbodings indicating that with increasing age,
modules tend to become less distinct, as exprassbd age-related decline in the graph
theoretical measure of functional system segregd@dan et al., 2014; Chong et al., 2019; Wig,
2017). Second, based on prior findings of a pasitelation between functional system
segregation and memory performance, with age cliedrstatistically (Chan et al., 2014), we
hypothesized that across a range of adult age 94#84ars), functional system segregation would
have a mediating influence on the negative reldtieveen age and fluid cognition. Finally,
given the evidence that anatomy exerts some def@nstraint on functional connectivity
(Greicius et al., 2009; Hermundstad et al., 201&)&y et al., 2007; Zhu et al., 2014), and the

previous findings indicating an association betwage-related differences in structural and
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functional connectivity measures (Andrews-Hannal €2007; Betzel et al., 2014; Chen et al.,
2009; Fjell et al., 2016; Zimmermann et al., 2016}, hypothesized that structural connectivity
would have a direct influence on functional conitgtin the context of neurocognitive aging.
2. Materials and methods

2.1. Participants

This research was conducted in accordance wit@due of Ethics of the World Medical
Association (Declaration of Helsinki) for experimigmvolving humans. The protocol was
approved by the Duke University Institutional ReviBoard, and participants gave written
informed consent at the start of the study. Thé@pants were 153 community-dwelling
individuals between 19 and 79 years of age. Ondregnand forty-five of these individuals
were included in the Madden et al. (2017) studghEparticipants had been excluded from the
2017 study due to missing data from another scanesee (T2-weighted fluid-attenuated
inversion recovery; FLAIR), which was not includiedhe present analyses, and these
participants were added to the current data sépahkticipants were right-handed, had completed
at least 12 years of education, did not reportraajor health issues, including atherosclerosis,
neurological, and psychiatric disorders (Christanseal., 1992).

The participants completed an initial screening®es which comprised the Freiburg
Visual Acuity Test (FRACT; Bach, 1996), Dvorine gpVision test (Dvorine, 1963), Beck
Depression Inventory (BDI; Beck, 1978), Mini-Mengthate Exam (MMSE; Folstein et al.,
1975), vocabulary subtest of the Wechsler Aduklligence Scale-Ill (WAIS; Wechsler, 1997),
and a practice version of the visual search taglopeed during the event-related functional
imaging (reported separately). All participants lsadected visual acuity equal to or better than

Snellen 20/40, scored 27 or higher on the MMSE fean 11 on the BDI, higher than thd"50
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percentile on the WAIS-III vocabulary subtest, d2dor higher on the Dvorine color vision test.
Data from nine individuals were excluded due tdtecal problems with their functional or
structural imaging data, and one individual hadiansually high studentized residual score in
the psychometric data. The final sample (Tableohsisted of 143 participants (78 females) with
49 participants between the ages of 19 and 39 y®brs25.14 years), 43 participants between
the ages of 40 and 59 yeak$ € 51.40 years) and 51 participants between the aig@0 and 79
years M = 67.75 years).
/— Insert Table 1 about here —/

2.2. Cognitive measures

The cognitive outcome measures comprised nine ¢é$iisid cognition, which targeted
three domains: elementary perceptual speed, exeduiction, and memory, with three
indicator variables per domain. With the exceptdtwo memory tests and one executive
function test that were standardized psychometstst all of the tests were designed for
computer administration within E-Prime (Psychol@&pftware Tools, Sharpsburg, PA, USA),
and responses were collected from response ketreeaomputer keyboard. The tests for
perceptual speed included: a) simple reaction {lR¥e pressing the space bar at the onset of a
square); b) choice RT (pressing a left or right &ethe appearance of a left- or right-facing
arrow); and c) another version of choice RT drammfthe neutral trials of the Stroop task
(pressing one of two keys to indicate the display@dr of a word). The tests for executive
function included: a) a digit-symbol coding taslki{8ouse, 1992); b) a verbal fluency task
(Goodglass and Kaplan, 1972; Loonstra et al., 2Q@ihg both letter and semantic category
probes; and c) a version of Stroop interferenceo@@t 1935). The Stroop measure was RT to

indicate the display color (red or blue) for therdsred andblue intermixed with the non-color



Aging Connectivity 12

(neutral) wordsaart andgame The interference measure was the proportionabase in correct
RT for the incompatible trials relative to the catiple trials. The tests for memory included: a)
the WAIS Digit Span subtest (Wechsler, 1997); le) dielayed memory subtest from the
California Verbal Learning Test (CVLT; Delis et,d987); and c) a visual working memory
task similar to that of Saults and Cowan (2007)s Tditer task involved a comparison of two
sequentially presented displays, each containkgapred squares. Duration for each display
was 1050 ms, and a blank, inter-display intervad w400 ms. The participant’s task was to
make a yes/no keypress response as to whetheff ¢meaplored squares in the second display
differed from the first display.

To define the cognitive outcome measures, we udadtar-analytic approach (Hedden
et al., 2012; Hedden et al., 2016; Salthouse g2@15) to obtain domain-specific measures for
perceptual speed, executive function, and memoryoWtained the first unrotated factor from a
principal axis factor analysis of all nine cognétitests, partialed for WAIS vocabulary and
gender, and used the factor score (for each paati€) from the first unrotated factor as a general
summary measure of fluid cognition. We then usetialar approach to obtain the first
unrotated factor for the three tests in each othinee domains of perceptual speed, executive
function, and memory. Because all of the nine test® intercorrelated, we obtained residual
scores for each domain by partialing out the otitetests not associated with that domain, as
well as gender and vocabulary. Madden et al. (2pidVyide additional procedural details for the
cognitive testing and construction of the factarss.

2.3. MRI data acquisition
The MRI session was conducted approximately onetimafter the initial screening

sessionThe functional and anatomical imaging data wasectéid on a 3 T GE MR750 whole-



Aging Connectivity 13

body 60 cm bore MRI scanner (GE Healthcare, Waukaah, USA) equipped with 50 mT/m
gradients and a 200 T/m/s slew rate. The scanresegeed an 8-channel head coil that was used
for radio frequency reception. Participants wongkgys to reduce scanner noise and foam pads
were used to minimize head motion. Three-planaifgit axial/coronal/sagittal) localizer fast
spin echo images were acquired at the start a¢he to define the volume for data collection.
Global field homogeneity was ensured by the use s#mi-automated high-order shimming
program. Two resting-state runs of T2*-weightechfional) imaging sensitive to the blood
oxygen-level-dependent (BOLD) signal, 4 or 5 ruhevent-related T2*-weighted imaging
(depending on the in-scanner task, not reporteg) h&run of T1-weighted anatomical images, 2
runs of diffusion-weighted imaging (DWI) and 1 rahT2-weighted FLAIR imaging were
recorded.

Anatomical T1-weighted images included 166 straaghal slices that were attained
using a 3D fast inverse-recovery-prepared spoitadignt recalled (SPGR) sequence with
repetition time (TR) = 8.13 ms, echo time (TE) #8ms, inversion recovery time (TI) = 450
ms, field of view (FOV) = 256 mm x 256 mm, flip dag- 12°, voxel size =1 x 1 x 1 mm, 256 X
256 acquisition matrix, and a sensitivity encodiB8&NSE) factor of 2, using the array spatial
sensitivity encoding technique and extended dynaanige.

The DWI data of 68 contiguous slices was acquitedgthe AC-PC plane using dual-
echo spin-echo parallel EPI pulse sequence; TR08 &8s, TE = 81.3 ms, FOV = 256 mm x 256
mm, flip angle = 90°, voxel size = 1 x 1 x 2 mmgaisition matrix size = 128 x 128, and
SENSE acceleration factor of 2. The DWI scan w&diB0 diffusion-encoding directions (b-

value = 1000 s/mfy with 1 non-diffusion-weightedd(0 s/mnf).
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For the resting-state scans, participants wereuctgd to remain awake with eyes open
and to view a fixation cross throughout the run*-Weighted gradient-echo EPI functional
images were 29 contiguous slices acquired at al aklique orientation, parallel to the plane
including the anterior and posterior commissureS-C plane) with TR = 1500 ms, TE = 27
ms, FOV = 240 mm x 240 mm, flip angle = 77°, vosiee = 3.75 x 3.75 x 4 mm, 64 x 64
acquisition matrix, and a SENSE factor of 1. Eatthe 2 resting-state functional MRI (fMRI)
runs comprised a time series of 162 brain voluroelected over a period of 4.05 min. Four
initial radio frequency excitations were performedchieve steady state equilibrium and were
subsequently discarded, resulting in 158 remaibnagn volumes per run.

2.4. MRI preprocessing

Study-specific anatomical templaféne image processing pipeline is illustrated inuiFég
2. We created a study-specific anatomical templateg the Advanced Normalization Tools
(ANTS) script for multivariate template constructio
(https://github.com/ANTsX/ANTs/blob/master/ScrigstsMultivariate TemplateConstruction.sh).
First, we made an average T1 brain image from4d8ldarticipants in the data set. Each individual
T1 brain was then warped to this starting pointage brain. The resultant individually warped
T1 images were merged together to create a nevagegtemplate, which became the starting
point for the next iteration of warping individugl images. The iteration continued until the
mean image converged, yielding the final study-sjgetemplate.

/— Insert Figure 2 about here —/

Structural connectivityTo process the structural DWI data we used abaushell script

(https://github.com/ElectricDinoLab/Connectome/lfabster/connectome_maker.sh; Davis et

al., 2019), which implements software packagesSh fFMRIB Software Library) from the
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Oxford Centre for Functional Magnetic Resonancegimg of the Brain (FMRIB;
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Jenkinson al., 2012), and MRtrix3 (http://mrtrix.org).

Two runs of DWI scans were collected for each pigodint, which were concatenated to generate
one data set for the analysis. The concatenatednae first de-noised with MRtrix using the
functiondwidenoiseand the brain was extracted from the skull uBiEJ (brain extraction tool)
in FSL. The data were preprocessed using the MRtvipreprocfunction. Head motion and
eddy current distortion were corrected using the 8&dytool, and bias-field correction was
completed with MRtrix function oflwibiascorrect DWI intensity normalization was applied to
the two DWI runs, which were averaged and prepfmettactography. Fiber orientation
distribution (FOD) was calculated usidgi2fodwith the option of constrained spherical
deconvolution (CSD) followed by the generation dfole-brain, probabilistic tractography.
MRtrix includes a simplified version of the sphatibarmonic model to calculate the coefficient
that is used in FOD to generate tracts. For CSD geageration, the maximum number of
spherical harmonic terms was set to 8, and a siitghe response kernel was estimated from
white matter voxels with FA > 0.3.

In the tractography, Anatomically Constrained Togcaphy (ACT) was adopted to
define the interface between white matter and gragter where the streamlines were seeded, to
improve the definition of the streamlines. The Wiage was registered to the diffusion image
and segmented in FSL into five tissue types: calrgcay matter, subcortical gray matter, white
matter, cerebrospinal fluid, and pathological tesdeollowing segmentation, the ACT option
was added to thiekgenfunction of MRtrix to anatomically constrain thetent of streamline
propagation for the tractography. For each paswitipten million tracts were generated from an

iterative procedure with random placement of sedtlin the mask, with a step size of 0.2 mm.
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These tracts were then filtered using SIFT (sphédeconvolution informed filtering of
tractograms) in MRtrix, which identified the falgesitive tracts, from a cost-function based on
the FOD (Yeh et al., 2016), yielding a final sebak million tracts per participant.

Regions of interest (ROIs) for both the structanad functional data sets were those
defined by the subparcellated anatomical Harvartbf@xAtlas (HOA; Jao et al., 2013; Monge
et al., 2017) with 397 ROIs. This subparcellatédsagxcludes the cerebellum, brain stem,
cerebral white matter, and lateral ventricle regiorhe regions were derived by sub-sampling
the larger regions defined by the automated anatditabeling (AAL) template image (Tzourio-
Mazoyer et al., 2002) to yield a finer-grained gdlation with all regional parcels or nodes
comprising an approximately equal number of voxX&lss approach yielded a spatial scale of
resolution larger than the individual voxel butcagsnaller than the regions within the AAL
template, which can obscure some regionally speeffects (Zalesky et al., 2010). It is also
possible to define nodes on the basis of functionahectivity (Wig et al., 2014; Yeo et al.,
2011). We believed, however, that using nodes fkaown anatomy for both structural and
functional data would be the least biased appréarctiefining modules for both types of data.
As noted previously in this section, a study-spe¢émplate was created based on all 143
participants. The HOA regions were registered &diudy-specific template using FLIRT
(FMRIB's linear image registration tool) in FSL atheén mapped to the individual participant’s
native space to extract the numbers of tractsdoh @articipant. The weighted connectivity
matrix of 397 x 397 ROIs was then computed, fohgaarticipant, based on the number of
streamlines traversing between all pairs of ROIs387 x 397 cells of the averaged matrix were

used, and each ROI contained a connectivity vatua it least 87% of the participants,
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although some matrix cells for individual partiapg.were zero. The raw connectivity matrices
(397x397x143) were then used for each participant as this barsthe graph theory analysis.

Resting-state functional connectivifjhe resting-state fMRI data were preprocessed
using an in-house pipeline
(https://wiki.biac.duke.edu/biac:analysis:restingetine#download_source) and FSL tools. Four
brain volumes were removed from the start of ed¢hetwo resting state runs to ensure that the
steady state equilibrium was attained. Each ofwizeruns was then corrected for the sampling
offsets inherent in slice-wise EPI acquisition sEwes using FSslicetimer.The two runs were
then demeaned and concatenated into a single elatarsprising the 8.10 min period. Motion
correction using MCFLIRT (motion correction usinglRIB's linear image registration tool)
was applied to the concatenated data set (Jenkatsan 2002). Twenty-four motion parameters
that included the six realignment parameters, tieenporal derivatives and squares were
regressed from each voxel using linear regress$tastén et al., 1996). The brain was extracted
from the skull with BET, and the data were firstmalized into the study specific template and
then the standard MNI152 T1 space using FLIRT adtRF (FMRIB's nonlinear image
registration tool). Next, signal from white matgerd cerebrospinal fluid was regressed out on
the basis of masks created with FAST (FMRIB's Audted Segmentation Tool; Zhang et al.,
2001). Global signal regression was not perfornbedause the global negative index (Chen et
al., 2012) was greater than the critical value.68Gor each participant, indicating that
regressing global signal would not be advantagdéuslly, temporal band-pass filtering limited
the data to frequencies in the 0.001- 0.08 Hz range

We performed additional motion scrubbing of voluméth either > 0.5 mm for

framewise displacement (FD) or 0.5% for timecowagance (DVARS; Power et al., 2012).



Aging Connectivity 18

Two brain volumes before and after the marked velsimere also excluded. From the total
45,188 volumes collected, 421 (0.93%) were excluatethe basis of these motion criteria.
Motion-scrubbed volumes did not exceed 22% for @anyicipant. In exploratory analyses, we
examined the correlations between FD and the giegidretical measures that we used as our
imaging outcome variables, and none of these @aiioals was significant.

The resting-state fMRI time series for each pgytiot consisted of 316 brain volumes
(concatenated 8.10 min period). For each of theFBOA ROIs, for each participant, we first
obtained the average time series for all the voxelse ROI, across the 316 volumes, and then
normalized (z-scored) the ROI time series. The atimad resting-state fMRI time series for
each of the ROIs was then correlated with the spoerding value for each of the other
remaining ROIs, yielding a 397 x 397 correlationtn&or each participant. The Pearson
correlation value in each matrix cell was transfedno Fishez

Because there is ambiguity regarding the interpogtaf negative correlations,
negatively weighted edges and the diagonals weite gero, as recommended by Rubinov and
Sporns (2010). However, we also conducted an exigor analysis to examine the nature of
connectivity among these negative correlations.céfestructed functional matrices with only
the negative correlations and then set the diagaral positive values to zero. We reversed the
sign of the negative correlations, because thehgitagoretical analyses require positive values.
We derived both the network partitions and the nfextly value (i.e.Q; the tendency of the
network to segregate into partitions, as definethéfollowing section) for these negative
functional matrices. The results indicated thatiaitral 397 ROIs (network nodes), were
partitioned into 297 modules, with an average maidiyl value Q) of essentially zero (0.0008).

Because the negative correlations did not partitibm a limited number of modules, these
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findings suggest that, in the present data senéigative correlations were not a systematic
source of variance in the functional connectiviggad All reported analyses are based on the
positive correlations.

Functional matrices are typically more denselynsmted than structural matrices,
reflecting the many indirect connections, with \magystrength, in functional data. We conducted
analyses on weighted matrices, rather than onftblésd binarized matrices, for both structural
and functional data, to retain sensitivity to thésiation in connection strength and to avoid
introducing multiple statistical comparisons acrdgterent thresholds (Rubinov and Sporns,
2011).

2.5. Graph theoretical measures

In graph theory, a network consists of nodes amgg&@connections between nodes),
which can be segregated into non-overlapping medai€ommunities, characterized by
stronger within-module and weaker between-modutaeotions. Here, the network nodes were
the 397 subparcellated HOA ROIls and the edges therstructural or functional connections
between the nodes. We averaged connectivity matatell participants to obtain a single
structural matrix and a single functional matrixodile definition is an estimate of the
community structure of the network and is influeshbgy many variables, including the
resolution of the partitioning algorithm and theyoee of interconnectedness between pairs of
communities (Fortunato and Barthélemy, 2007; Tetaa., 2019). Many studies have used
previously defined sets of modules, based on pettef resting-state or task-related fMRI data
(Power et al., 2011; Yeo et al., 2011). Howeverdetned modules in a data-driven manner,
within the structural and functional domains, rattian using an independent definition of

modular structure, so that the analyses wouldceftee network community structure inherent in
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the data. To compute the optimal partitioning @& thole-brain data into modules, we applied
the Louvain algorithm (Blondel et al., 2008) fronetBrain Connectivity Toolbox (www.brain-
connectivity-toolbox.net; Rubinov and Sporns, 20d0he group-averaged structural and
functional matrices.

For the structural data, using the default valu@)(@f the resolution parameter (gamma;
y) of the Louvain algorithm yielded eight interpigteamodules. For the functional data,
however, using the default gamma of 1.0 yielded émlir modules corresponding
approximately to cortical lobes. Increasing the gemo 1.15 yielded six modules that were
more interpretable functionally and included amteand posterior components of the default
mode network. Increasing gamma further to 1.25d@elseven functional modules, which were
similar to the partitioning with gamma = 1.15 exctyat the posterior default mode region was
divided into separate modules, which were lesdyemserpretable. We therefore maintained
gamma at 1.15 for the functional data, which prediue modular structure corresponding most
closely to previous literature and known anatomy.

Other than different resolution parameters, de@iniof the modules proceeded in a
similar manner, in separate analyses, for the tstraicand functional data. We used the
consensus clustering approach to obtain the opfarditioning of modules (Lancichinetti and
Fortunato, 2012). We ran the Louvain algorithm ibs on the averaged matrix and calculated
an agreement matrix from those 150 iterationsptain the proportion of times each pair of
nodes were assigned to the same module. To renmyweeak or spurious node agreements, we
then thresholded the agreement matrices at 0.68 rétaining values for only those pairs of
nodes that were assigned to the same module able#sof the time. We then applied the

optimal structural and functional modules, derifren the averaged data, to the connectivity
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data for each participant. The averaged connegtivdtrices comprising the eight structural
modules and six functional modules are describedadre detail in Results (section 3.2.2.).
The term modularity refers to the degree to whitbfahe nodes in the network (in this
case the brain) partition into modules, that isugs of nodes with strong within-module
connections and weaker between-module connecti@nsa network witlc modules, modularity

Q is defined by Equation 1:

Q= ﬁzlyj [Aij — %] 8(ci ) 1)
whereA;; represents the weight of the edge between niogledj,k; = }.; 4;; is the sum of
the weights of the edges attached to nodgis the community to which nodes assignedj is
the Kronecker delta function, amd = %ZUAU- (Newman and Girvan, 2004).

In our primary analyses we imposed the group-awetagodular partition on the
individual participants’ data, but we also examiiadividual differences in modular structure.
When we estimated the structural modules at theighahl participant level, the results yielded
between eight and ten structural modules for 91.64%e participants, and the correlation
between the number of modules and age was nofisgmt,r = 0.095,p = 0.261. The
modularity valueQ for the structural datév = 0.682,SD= 0.011) did not vary significantly
with age,r = 0.074,p = 0.382. For the functional data, 98.6% of theipigants exhibited
between three and six modules, and the number dtiles did not vary significantly with age,
=-0.075,p=0.372. HoweverQ (M = 0.174,SD= 0.039) decreased significantly with age in the
functional datar = -0.385,p < 0.001, indicating some age-related variatiomodular structure.

We also measured the degree to which each pensmaslar organization differed from
that of the group-averaged data, usinggasition_distancegunction from the Brain

Connectivity Toolbox. This function estimates tlaigtion of information (VI), which is a
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normalized information-theoretic measure of theatise between network organizations, where
a VI of 0 represents perfect correspondence oitjgaas (Meila, 2007). In the structural data,
mean VI was 0.1633D = 0.032) and was not correlated with age,0.026,p = 0.7606
(uncorrected). The mean VI for the functional daMa= 0.386;SD= 0.039) was correlated
positively with ager = 0.298,p < 0.0003 (uncorrected), indicating a greater dispar the
modular structure, with increasing age, relativéhsaverage structure. Thus, although the
functional data exhibited some age-related diffeesrin modular structure, both the structural
and functional data exhibited a constancy in thaler of modules consistent with the group-
averaged data.

Our analyses focus on four graph theoretical nteaghat reflect the properties of
network information transmissioglobal efficiency, local efficiency, strengndsystem
segregationAs described in more detail in the immediateljolwing paragraphs, these
measures were calculated both at the whole-brael &nd at the individual module level, for
each participant, for the analyses of their refatmage and the cognitive outcome measures.

2.5.1. EfficiencyConsidering information transmission as a path betwtwo nodes,
efficiency represents the number of interveningesdaetween the nodes, with more efficient
paths being characterized by fewer intervening edgatora and Marchiori, 2001). Global
efficiency is the measure of efficient informatipropagation across the whole network. It
represents the average inverse shortest path lentith network, that is, the minimum number
of edges to be traversed between each pair of nadesged across all node pairs. It was

calculated by Equation 2:

Global ef ficiency = n(n;_l)zi;tjecﬁj (2)
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where,n is the number of nodes in the netwdrls the shortest path length, anahdj are nodes
in graphG. Local efficiency, in contrast, represents infotim propagation in the neighborhood
of an individual node (i.e., nodes that are digectinnected to the node). It was calculated by

Equation 3:

1

ni(n;—1)

1

Local ef ficiency = Y keg 3

Lk
where n; is the number of nodes in the neighborhood of nddrcluding node itself), | is the
shortest path length, apéndk are nodes in subgragi(consisting of neighborhood nodes of
nodei). At the whole-brain level, local efficiency wagesaged across all nodes (i.e., the 397
ROIs), whereas at the module level, local efficiewas averaged across all the nodes within the
module.

2.5.2. StrengthStrength refers to the strength of connectionséen two nodes,
expressed as the number of streamlines in theaddbe DWI data and the magnitude of the
positive correlations in the case of the restiradestMRI data. Three strength measures were
obtained for each participant. First, average giterepresents the strength of the connection of
each node to every other node in the brain. Atthele-brain level, the estimate of strength was
averaged across all nodes. At the module levelnhgth represents the averaged connection, for
the nodes in the module, to all other nodes irbthen. Second, for each node, between-module
strength represents the strength of a node’s ctiongo all other nodes outside its associated
module. At the whole-brain level, the estimate wasraged across all nodes, whereas at the
module level the estimate represents the averagatkections from the nodes within the module
to all other nodes outside the module. Third, witiiodule strength represents the averaged

strength of the connections among the nodes wihaih module. At the whole-brain level, this
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estimate was averaged across all nodes, wheréas @miodule level, within-module strength
represents only the nodes within the module.

2.5.3. System segregati@®ystem segregation represents the degree to wiadnles
are separated from each other, expressed as thetategof the within-module strength relative
to between-module strength (Chan et al., 2014; \&04.7). It was calculated by Equation 4:

System segregation = (Z,, — Zp)/Z,, 4)

where, in the DWI datd,, is the mean number of streamlines between nodéswgach
module andZ, is the mean number of streamlines between nodeseomodule to nodes in all
other modules. In the resting-state fMRI d&ig,is the mean normalized correlation between
nodes within each module adg is the mean normalized correlation between notles®
module to nodes in all other modules. For both ntertty and system segregation, higher values
indicate a more segregated network. At the whoterldevel, system segregation was averaged
across all nodes, whereas at the module levekmsységregation was defined on the basis of the
nodes within the module.
2.6. Statistical analyses

Statistical analyses were conducted using SASIAS Institute, Inc., Cary, NC, USA)
within the general linear model. Mediation analysese conducted to test models of the relation
between age, the graph theoretical measures, armbgnitive outcome variables. The mediation
analyses were conducted with the PROCESS maci®A8r(Hayes, 2013). We used the
network-property measures that were available fiatyses at both the whole-brain and
individual module levels (efficiency, strength, ay$tem segregation) as mediator variables. In
each model, age was the predictor, the graph thealreneasures were the mediators, and the

outcome variables were the cognitive measuresoffacores). In models with multiple
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mediators, the effects of individual mediators @earied with respect to the other mediators.
For each model, parameter estimates and 95% bapistnfidence intervals were based on
10,000 bootstrap samples. Significance testincacdipeter estimates for individual paths was
conducted by-test, but mediation (path interaction) effectsevassessed by the confidence
intervals, as these latter effects are typicallydistributed normally (Hayes, 2013). Mediation
effects were considered to be statistically sigaifit when the associated 95% confidence
interval did not include zero.
3. Results
3.1. Screening and cognitive measures

The screening measures in Table 1 indicate theg@ased age was associated with
decreasing visual sensory function, as represdtetclining visual acuity and color vision. A
detectable decrease in MMSE with increasing agealgaspresent, but this result is likely
influenced by the limited variability associatedmwihe inclusion criteria (MMSE = 27-30). No
age-related decline in WAIS vocabulary was evidant the years of education increased with
age.

Overall fluid cognition, comprising the first factscore for the nine cognitive tests,
partialed for gender and WAIS vocabulary, declisgphificantly with ager = -0.718,p <
0.0001 (Figure 3, Panel A). The factor scoresHerthree tests within each of the three
individual cognitive domains, partialed for gended WAIS vocabulary, also declined with age:
executive function; = -0.629,p < 0.0001, memory, = -0.447,p < 0.0001, and speead= -0.580,
p < 0.0001. As noted previously in the Methods (sec?.2.), to control for the shared variance
among the tests, we partialed the factor scoreadh domain for the six tests not associated

with that domain (Madden et al., 2017; Salthousad.e2015). The residual executive function
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score exhibited a significant decline with age (ifgg3, Panel B), whereas the residual scores for
memory and speed did not exhibit an age-relatetindeindependently of the variance shared
with tests outside their domain (Figure 3, Panet@ D).

/— Insert Figure 3 about here —/
3.2. Graph theoretical measures

3.2.1. Whole-brain analysi€orrelation of whole-brain measures with age aesgmted
in Table 2. Significance levels for the correla@are Bonferroni-corrected for six comparisons
within the structural and functional domains. Fofehe structural network-property measures
related to efficiency and strength of connectidgclined with age, although structural system
segregation was constant with age. In the funclimeasures, only system segregation declined
with age.

/— Insert Table 2 about here —/

Because age-related decline was significant ferall/fluid cognition and residual
executive function (Figure 3), we constructed twpasate mediation models for these variables
(Table 3). In each model, age was the predictat,thae outcome variable was either overall fluid
cognition (Model 1) or residual executive functidviodel 2). The potential mediators were the
network-property measures that varied significanilh age: structural global efficiency,
structural local efficiency, structural averageesgth, structural within-module strength, and
functional system segregation. These were parakeliation models, in the sense that the
mediators were assessed simultaneously, covanieghtih other (Hayes, 2013). Within each of
these models (Table 3), thgpath (age> mediator) was significant for all of the mediators
reflecting the basis for selecting these mediafbineb (mediator-> outcome) path was

significant only for functional system segregatioiModel 2. That is, among all the mediators,
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only the relation between functional system segregand residual executive function was
significant independently of age. The parametemeaté was positive, indicating that increasing
functional system segregation was related to admnitgvel of executive function. Thegpath
(total effect of age on the outcome measure) wgrsfgiant for both models, with negative
parameter estimates, because we selected the tamnoelvariables with age-related decline.
Across the two models, the only mediation effeet thas significant was associated with
functional system segregation, which mediated ¢fetion between age and residual executive
function in Model 2 (Figure 4). Th& path (direct effect of age) for residual execufivwection
was not significant following mediation by functarsystem segregation.

/— Insert Table 3 and Figure 4 about here —/

To determine whether the structural network propedirectly influenced functional
system segregation, we constructed a model in wtheelstructural measures of efficiency and
strength were potential mediators of the relatietwleen age and functional system segregation
(Table 4). None of the structural measures, howevas a significant mediator, and none
exhibited an age-independent relation to functieyatem segregation.

/— Insert Table 4 about here —/

Although the direct influence of structural contidty on functional connectivity was
not significant in the context of the graph thewadtvariables, we examined the relation
between structural and functional connectivitytia taw matrix data underlying the graph
theoretical analyses. We first restricted the datdo those cells in the structural connectivity
matrix, for each participant, that contained a fsivalue, that is, pairs of nodes with a
structural connection. We conducted four explogatests and Bonferroni-corrected the

significance levels for these tests. The averaget@un of streamlines per cell (i.e., node to node
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connection) in each person’s structural matrix ided significantly with age (Figure 5, Panel
A), r =-0.318,p < 0.001 (corrected). The Fishetransformed correlation of the fMRI time
series associated with these streamlines, howdienot exhibit age-related decline (Figure 5,
Panel B). As an estimate of structural-functior@irectivity, we obtained, for each participant,
the Pearson correlation between those structural connectiaes, fiumber of streamlines) and
the functional connectivity in the correspondingisef the functional connectivity matrix. The
resulting correlations (Fisher-z transformed), warerall greater than zer§142) = 80.07SE=
0.00418p < 0.001 (corrected), and declined significantlyhnage (Figure 5, Panel Q)7 -
0.402,p < 0.001 (corrected).

/— Insert Figure 5 about here —/

3.2.2. Individual moduleS'he group-averaged structural data yielded eigidutes
(Figure 6). These essentially reflected four mosluweh both left and right hemisphere versions:
occipitoparietal regions (Figure 6, Panels A andsEhsorimotor regions (Figure 6, Panels B and
H), temporal regions (Figure 6, Panels C and Hj,feontal regions (Figure 6, Panels D and G).

The group-averaged resting-state fMRI data yieklrdunctional modules (Figure 7). In
contrast to the structural modules, which weraiailateral, the functional modules were all
bilateral. These comprised sensorimotor regiongufiei 7, Panel A), anterior and posterior
components of the default mode network (Figureandls B and F), limbic and orbitofrontal
regions (Figure 7, Panel C), auditory (superiorgeral) regions (Figure 7, Panel D), and
occipitoparietal regions (Figure 7, Panel E).

/— Insert Figures 6 and 7 about here —/
3.2.3. Age-related differences for individual meduT o investigate age-related

differences for individual modules, we conductedudtiple regression model for each of the
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five network properties within both the structuaald functional data for each module: local
efficiency, average strength, between-module sthemgthin-module strength, and system
segregation. (Because global efficiency referfiéovthole-brain network, this measure was not
analyzed at the level of the individual modules.g&ch model, age was the outcome variable,
and the individual modules (eight for the struckuaiata, six for the functional data) were
simultaneous predictor variables. Thus, a signifiedfect (beta value) for an individual module
represented a contribution to the age-related eélecve and beyond the other modules.
Significance levels were Bonferroni-corrected foe five models in each domain.

These analyses indicated that significant ageaelatfects (from the combined effects of
all modules) were present for local efficiency, rage strength, between-module strength,
within-module strength, and system segregationl€l'ap An age-related decline in structural
connectivity (i.e., negative beta value) for thghtifrontal module contributed significantly to
the overall age-related effects for average stremgthin-module strength, and system
segregation. In the structural data, the left aomparietal module also exhibited age-related
decline in between-module strength. The right teraljpmodule also exhibited a positive, though
small, age-related effect for average strength €&y which was also evident in the bivariate
correlation between age and average strengtt.159,p < 0.06 (uncorrected).

The only age-related effect in the regression nwdethe individual functional modules
was associated with system segregation (Tables6h the whole-brain analyses (Table 2). The
only unique contribution from an individual modwias the age-related decline in system
segregation for the occipitoparietal module.

/— Insert Tables 5 and 6 about here —/
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3.2.4.Alternative network partitionsThe analyses reported above rely on one approach
to defining structural and functional modules, ihigh the connectivity matrices for structural
and functional data were each averaged acrosauitipants, and the modules estimated from
the averaged matrices were applied to individugi@pants’ data. We adopted this approach to
identify a set of modules, within the structuratldanctional data, that would be comparable
across participants and allow correlation with cagnitive outcome variables. We also explored
two alternative methods of partitioning the netvgiik which the structural modules were used
to partition both the structural and functionaladdh both of these approaches, we implemented
consensus clustering, with 150 iterations of theJain algorithm, gamma = 1.0, and
thresholding of the agreement matrices as descabede (section 2.5Graph theoretical
measurek In the first approach, we used the averagedtstral connectivity data to define the
modules for both the structural and functional dafi¢h the eight structural modules (Figure 6)
applied to the functional data. In the second ag@rpwe did not average the matrices, but
instead used each participant’s module partitimmfthe structural data, for both the structural
and functional data. That is, in this latter appfgave did not require that the individual
modules be constant across participants.

The results of these two alternative approacheatitioning the data, reported in
Supplementary Materiayielded both similarities and differences to tinelings reported in this
Results section. When using the averaged struatuwdlles to define the functional modules,
the functional connectivity results were comparabldefining the modules from the functional
data as reported in this Results section. Withdahernative method of defining the functional
modules, the age-related decline in system segoaga&mained the only age-related effect

(Table S1). In a mediation analysis with functiosydtem segregation and the structural whole-
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brain measures of strength and efficiency as mediagtunctional system segregation was the
only significant mediator of the age-related dezlim residual executive function (Table S2), and
no mediation was evident for overall fluid cognitid'his is exactly the pattern reported in this
Results section.

When, however, we allowed the modules to vary acpasticipants and applied each
participant’s structural modules to their functibdata, a different pattern of age-related effects
occurred. The structural and functional connegctidéta for global efficiency, local efficiency,
and average strength were identical across therdiff methods, by definition, because modular
structure does not contribute to these whole-hra@asures. The within-module and between-
module strength values, however, do depend on rapdtructure, and in contrast to our primary
analyses (Table 2), these latter values did nabéxdn significant age-related decline in
structural connectivity when defined at the papicit level (Table S3). In the functional data,
system segregation continued to be the only variakhibiting age-related decline (Table S3).
When functional system segregation was includeshalvith structural global efficiency, local
efficiency, and average strength, in a mediatiod@hof the relation between age and residual
executive function, none of the variables was $icgmt as a mediator of either overall fluid
cognition or residual executive function (Table .S4)

4. Discussion

In the present analyses we used graph theoreteasunes to characterize age-related
differences in the strength and efficiency of diwual brain connectivity (based on DWI) and
functional brain connectivity (based on restingestdRI). Previous investigations have
reported age-related decline in both structuralfandtional connectivity in relation to fluid

cognition (Andrews-Hanna et al., 2007; Chen et28lQ9; Fjell et al., 2016; Hedden et al., 2016;
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Li et al., 2020; Madden et al., 2017). Structurad &unctional measures have typically been
treated as separate variables, however, withowdiderning that structural connectivity may
constrain functional connectivity (Damoiseaux andi@us, 2009; Greicius et al., 2009;
Hermundstad et al., 2013; Honey et al., 2007; Hata}., 2009; Zhu et al., 2014). Although
some findings suggest that that age-related dexlifinctional connectivity is dependent on
structural connectivity (Andrews-Hanna et al., 20B&tzel et al., 2014; Fjell et al., 2016;
Zimmermann et al., 2016), other investigations hewggested that structural connectivity only
weakly constrains age-related differences in fumati connectivity (Fjell et al., 2017; Tsang et
al., 2017).

Graph theoretical measures have provided a commaamefvork for characterizing the
properties of structural and functional networkecént graph theoretical studies consistently
observe age-related decline in structural conniggtfGong et al., 2009; Wu et al., 2012; Zhao et
al., 2015). Age-related differences in functionahgectivity are more variable, but a decline in
the segregation of functional modules (system gggi@n) has been a reliable pattern (Chan et
al., 2014; Chong et al., 2019; Wig, 201Hpwever, no previous investigation has, to our
knowledge, combined graph theoretical measureswftaral and functional connectivity in the
context of age-related differences in fluid cogmtiHere, we investigated the relation between
graph theoretical structural and functional bratwork properties, in the context of age-related
differences in fluid cognition. Our analyses weuvgdgd by three broad hypotheses: that the
graph theoretical measure of functional systemesggion would decrease with age, that
functional system segregation would be a signiticaediator of age-related decline in fluid

cognition, and that structural connectivity woutthstrain the influence of functional
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connectivity on the age-cognition relation. We afsgestigated the potential contributions of
individual modules comprising the structural anddional networks.
4.1. Age-related differences in brain connectivityand fluid cognition

We observed an age-related decline in functionstesy segregation (Table 2), which
confirmed our first hypothesis, based on previdogifgs reported by Chan et al. (2014) and
Chong et al. (2019). We extend these previousriigglin two ways. First, the Chan et al. and
Chong et al. studies did not include structuralrbcannectivity data. Our analyses, combining
graph theoretical measures of structural and fanatidata, indicate that the age-related decline
in system segregation (at the whole-brain levetpiscific to functional connectivity and is not a
feature of structural connectivity (Table 2). Satcanalyses of the individual functional
modules demonstrate a specific contribution froendbcipitoparietal module to the age-related
decline in system segregation (Table 6 and Figur&his pattern corresponds to the previous
ICA analyses of resting-state functional connetgtiof this data set (Madden et al., 2017), in
which an ICA network that included visual sensamytex exhibited the most pronounced age-
related decline. Chan et al. proposed that the@lgéed decline in functional system segregation
was more pronounced for modules comprising primasisociation cortex, compared to those
comprising primarily sensory cortex (Suarez et2020). Here, the parietal nodes within the
occipitoparietal module would be consistent with @han et al. results, whereas the occipital
nodes (at least those within primary visual corteguld not. The method for assigning nodes to
modules differs across these studies, being dataerdhere and defined by the results of an
independent data set (Power et al., 2011) in tten@h al. report, which may account for the

different regional pattern.
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Our second hypothesis was that functional systegregation would mediate the relation
between age and fluid cognition. Previous analgééisis data set with ICA-based measures of
connectivity (Madden et al., 2017), as well as p8tadies of brain connectivity not derived
from graph theory (Chen et al., 2009; Fjell et2016; Hedden et al., 2016; Li et al., 2020;
Madden et al., 2017), have demonstrated that lothteral and functional connectivity
contribute as statistical mediators of the relabetween age and cognitive performance.
Investigations using graph theory have yielded sem@ence that specific network properties,
such as system segregation, contribute to agesdethtferences in cognition. Chan et al. (2014)
and Chong et al. (2019), for example, both repoatpdsitive relation between cognitive ability
and graph theoretical measures of module distian@gs, with age controlled statistically.
Bagarinao et al. (2019) found that a graph thecaiktheasure of network integrity was a
statistical mediator of the relation between age global cognitive functioning. We extend
these previous findings by showing that a speagfiaph theoretical feature of resting-state
functional modules, system segregation, has a rieglieole in age-related cognitive decline.
When the six graph theoretical measures that wggesansitive (structural global efficiency,
structural local efficiency, structural averageesgth, structural within-module strength,
structural between-module strength, and functiggatem segregation) were included as
potential mediators of the relation of age to thierall cognitive and residual executive function
measures, only functional system segregation wasdiator in a model with residual executive
function as the outcome measure (Figure 4; TabMdglel 2). That is, the relation of age to
residual executive function was indirect, operatimgugh functional system segregation.

The path coefficient for the relation of functiorsgistem segregation to residual

executive function, covaried for age (i.e., theath in Table 3, Model 2), was positive,
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consistent with the previous findings indicatinguarderlying positive relation between the
distinctiveness of functional modules and cognitiBagarinao et al., 2019; Chan et al., 2014;
Chong et al., 2019). The mediating effect of fumaéll system segregation, however, was
specific to residual executive function, even thHotite age-related effect sizg for overall

fluid cognition was much greater than the effezedor residual executive function (Figure 3).
Thus, the mediating effect of system segregatigmigriven by the age-related effect size of
the cognitive outcome variable.

The pattern of age-related differences in the gtapbretical measures of structural
connectivity were generally consistent with prewdmdings. We observed, consistent with
earlier studies (Gong et al., 2009; Wu et al., 20 et al., 2015), that the efficiency and
strength of structural connectivity declined witheg Table 2). We also obtained specific
regional effects of structural connectivity (Table with prominent contributions from the right
frontal module to age-related differences in averstgength, within-module strength, and
system segregation (Zhao et al., 2015). The lafipittoparietal module exhibited both a decline
in between-module strength and an increase inmsységregation. Interestingly, the overall
model for age-related differences in structuratesyssegregation was significant with the
connectivity measures averaged per module (Tabltgreas the initial analysis of the whole-
brain measures of structural connectivity, averggioross all nodes, did not exhibit an age-
related decline in system segregation (Table 2¢s&hesults appear to reflect an age-related
decline in structural system segregation for tgatrfrontal module, combined with an age-
related increase for the left occipitoparietal meddable 5), which may have cancelled each

other in the whole-brain analysis.
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The results provided limited support for our thirgbothesis, that structural brain
connectivity would constrain the pattern of funotdconnectivity. We based our prediction on
previous findings (Andrews-Hanna et al., 2007; Beé&t al., 2014; Chen et al., 2009; Fjell et al.,
2016; Zimmermann et al., 2016) suggesting thatrazged differences in functional
connectivity were dependent on structural conndgtiin line with data from younger adults
(Damoiseaux and Greicius, 2009; Hermundstad e2@1.3; Honey et al., 2007; Honey et al.,
2009). Having demonstrated a significant influeat&nctional system segregation in the
relation between age and residual executive fundgtagure 4; Table 3, Model 2), we asked
whether aspects of structural connectivity influeshthe relation of age to functional system
segregation. The results, however, indicated tbhaerof the graph theoretical measures of
structural connectivity was a significant mediatbthe age-related decline in functional system
segregation (Table 4). But we also explored thestauctural and functional connectivity
matrices, from which the graph theoretical measwere derived. In this exploratory analysis
we restricted the matrices to those cells withracstiral connection between nodes. At this raw
matrix level, the relation between structural amadctional connectivity declined with age
(Figure 5, Panel C). This suggests that age-reld¢etine in structural connectivity may
contribute to decreased functional connectivity agwegions, although a causal effect cannot
be inferred from this correlation. Overall, ourdings are in line with those of Fjell et al. (2017)
who proposed that structural connectivity providedeasurable though relatively weak
constraint on age-related differences in functimeelnectivity.

4.2. Limitations
Graph theory provides a theoretical and measureowgriéxt that can encompass

structural and functional brain connectivity ddiat alternative methods exist for defining nodes
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and comparing structural and functional moduleffeP@nt methods of defining nodes,
partitioning modules, and many other stages withéanalysis pipeline, will influence the
results (Botvinik-Nezer et al., 2020; Gargouri ket 2018; Sporns and Betzel, 2016; Zalesky et
al., 2010). In our primary analyses, we definethgle modular structure, based on the
participant-averaged structural and functional €atron matrices (Figure 2), but we allowed the
module topology to differ between the structurad &mctional domains. We performed
additional analyses with two alternative versiohthtss method of defining modules
(Supplementary MateriglIn the first approach, the set of structural oled that we used in the
primary analyses, defined from the participant-aged correlation matrix, were applied to both
the structural and functional data. In the secqgm@ach, the structural modules for each
individual were applied to that individual’s strucal and functional data.

As noted in Section 3.2.4Alternative network partitionsthe results from the first
approach were largely consistent with the resel®rted in the main text, in that the functional
data yielded an age-related difference only fotesyssegregation, and functional system
segregation was the only significant mediator efadlge-related decline in residual executive
function. The second approach, however, with irdiiglly varying structural modules, did not
yield the age-related decline in within- and betwegdule structural connectivity that we
observed in the main analyses. With the individuadirying structural modules, functional
system segregation continued to exhibit age-reldéatine but did not mediate the relation
between age and residual executive function. Téwsfindings for functional connectivity were
consistent regardless of whether the functionad dagre based on structural or functional
modules, when the modules were defined from thegizant-averaged matrices. Participant-

varying modules yielded different results.
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Mediation analysis is a form of ordinary linear meggion that is designed to identify the
causal relations among variables (Hayes, 2013)assesectional data. By defining the patterns
of shared and unique variance across individualsameinterpret age-related differences, but
these individual differences in cross-sectionahdat not the same as change over time, which
requires longitudinal analysis (Hofer and Sliwing®01; Lindenberger et al., 2011). A
limitation of longitudinal analysis is that scol@® correlated across measurement occasions,
and as a result the systematic variance in changetione may be small relative to the variance
at each measurement occasion (Salthouse, 201hp8sdt and Nesselroade, 2002). Converging
information from cross-sectional and longitudin@aidses would provide a more complete
account of age-related effects.

4.3. Conclusion

From the application of graph theoretical analyfiesse results demonstrate that
structural and functional brain networks exhibftetient patterns of age-related decline, that
functional connectivity influences age-related eliénces in one form of fluid cognition
(executive function), and that structural connettiexerts a limited constraint on age-related
decline in functional connectivity.

Age-related differences in structural connectivitgre evident in the majority of the
graph theoretical measures. Age-related declinesigasficant for whole-brain efficiency and
strength of connectivity among all nodes, as welhawithin- and between-module strength,
though not in system segregation. Functional cairig in contrast, exhibited age-related
decline only in system segregation, reflecting erél@se in the distinctiveness among modules
with increasing age. Individual modules contribupedminently to the structural and functional

age-related effects: right frontal and left oc@p#rietal modules for age-related decline in
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structural connectivity, and a bilateral occipitdptal module for age-related decline in
functional system segregation. Mediation analysesahstrated that functional system
segregation had a specific influence on age-reldéetine in executive function, distinct from
the fluid cognitive abilities shared by perceptsi¢ed, executive function, and memory. The
age-related differences in the graph theoreticalsuees of structural and functional connectivity
were largely independent. In the underlying ravadagtrices, however, the results suggested
some degree of anatomical constraint on functiooahectivity. For pairs of nodes with a
structural connection, age-related decline in stimat and functional connectivity were
correlated. Overall, these findings suggest thati$ip aspects of structural and functional brain

networks interact to define the pattern of ageteelaecline in fluid cognition.
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Table 1
Participant Characteristics

Variable M SD Min Max r with age

Education (years) 16.80 2.05 12.0 20.0 0.42%**

Color Vision 13.87 0.41 12.0 15.0 -0.23*
Visual acuity -0.06 0.12 -0.23 0.34 0.33***
BDI 2.35 2.54 0.0 9.0 0.15
MMSE 29.09 0.97 27.0 30.0 -0.23*
Vocabulary 55.99 6.33 38.0 66.0 0.16

Note.n = 143. Color Vision = score on the Dvorine platesorine, 1963). Visual acuity is Log
minimum angle of resolution (MAR). Log MAR of 0 eesponds to Snellen 20/20, with
negative values corresponding to better resolufibms, the positive correlation for acuity
represents age-related decline in this measure -BBHck Depression Inventory (Beck, 1978);
MMSE = Mini Mental State Exam (Folstein et al., 53A/ocabulary is the raw score on the
vocabulary subtest of the Wechsler Adult Intelligetscale (Wechsler, 1997). Significance
levels are Bonferroni-corrected for six comparisons

* p < 0.05 (corrected)

** p < 0.01 (corrected)

*** < 0.001 (corrected)
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Table 2

Whole-Brain Graph Theoretical Measures

M SD r with age
Structural Data
Global Efficiency 51.25262 5.84513 -0.30976**
Local Efficiency 9.35920 0.87052 -0.32981***
Strength 2341.00000 264.91236 -0.24684*
Between-Module Strength 8.47879 1.01790 -0.32609***
Within-Module Strength 59.67510 5.23890 -0.32179**
System Segregation 0.85780 0.01285 0.11109
Functional Data
Global Efficiency 0.31803 0.04720 0.17434
Local Efficiency 0.24162 0.09175 0.17274
Strength 63.54536 19.73774 0.16449
Between-Module Strength 0.27391 0.09351 0.20087
Within-Module Strength 0.44287 0.09511 0.09610
System Segregation 0.39044 0.06728 -0.37299***

Note.n = 143. Significance levels were Bonferroni-coreector the six comparisons within each
type of data.

* p < 0.05 (corrected)

** p< 0.01 (corrected)

*** p<0.001 (corrected)
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Table 3
Mediation of Age-Cognition by Functional Systemr&gation and Structural Graph Variables

Effect SE t p Lower ClI  Upper CI

Model 1:x = age;m = six whole-brain structural and functional graphattyemeasures that showed significant correlaticih age}y

= overall fluid cognition score

Age effect (a path)

Structural global efficiency -0.0950 0.0251 -Br78  0.0002 -0.1447 -0.0453
Structural local efficiency -0.0151 0.0037 -4.081 0.0001 -0.0224 -0.0078

Structural average strength -3.4767 1.1646 -B92 0.0034 -5.7795 -1.1738
Structural within-module strength -0.0886 0.0225 -3.9379 0.0001 -0.1331 -0.0441

Structural between-module strength  -0.0176  0.0044 -4.0400  0.0001 -0.0263 -0.0090
Functional system segregation -0.0013 0.0003 7420 0.0000 -0.0019 -0.0008

Mediator to outcome (b path)

Structural global efficiency 0.0282 0.0281 1003 0.3175 -0.0274 0.0838
Structural local efficiency -0.1778 0.1670 .0449 0.2889 -0.5082 0.1525
Structural average strength -0.0005 0.0007 6798 0.4981 -0.0018 0.0009

Table 3 continues
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Table 3, continued

Structural within-module strength -0.0066 0.02980.2226 0.8242 -0.0655 0.0523
Structural between-module strength 0.0471  0.130R.3621 0.7178 -0.2103 0.3046
Functional system segregation 0.0713 0.8840.0807  0.9358 -1.6773 1.8199
Total effect for age (c path) -0.0351  0.0029 -12.1247 0MOO -0.0408 -0.0294
Direct effect for age (¢’ path) -0.0363 0.0034 -10.6879  0.0000-0.0430 -0.0296
Mediation effect (a x b path interaction)
Structural global efficiency -0.0027 0.0028 — — -0.0088 0.0024
Structural local efficiency 0.0027 0.0027 — — -0.0023 0.0086
Structural average strength 0.0016  0.0024— — -0.0028 0.0069
Structural within-module strength 0.0006 @60 — — -0.0047 0.0058
Structural between-module strength -0.0008 0MO0 — — -0.0052 0.0036
Functional system segregation -0.0001 0.0011

—_ - -0.0025 0.0020

Model 2:x = age;m = six whole-brain structural and functional graphatlyemeasures that showed significant correlatiai ageyy

= residual executive function score

Table 3 continues
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Table 3, continued

Age effect (a path)

Structural global efficiency -0.0950 0.0251 -3r78  0.0002 -0.1447 -0.0453
Structural local efficiency -0.0151 0.0037 -4.081 0.0001 -0.0224 -0.0078

Structural average strength -3.4767 1.1646 -B92 0.0034 -5.7795 -1.1738
Structural within-module strength -0.0886 0.0225 -3.9379 0.0001 -0.1331 -0.0441

Structural between-module strength  -0.0176  0.0044 -4.0400 0.0001 -0.0263 -0.0090

Functional system segregation -0.0013  0.0003 7420 0.0000 -0.0019 -0.0008

Mediator to outcome (b path)

Structural global efficiency 0.0103  0.0201  0.51350.6084 -0.0295 0.0502
Structural local efficiency -0.0247 0.1198 -(B30 0.8369 -0.2617 0.2122
Structural average strength -0.0006  0.0005 4B32 0.1876 -0.0016 0.0003
Structural within-module strength 0.0298 0.02141.3947 0.1654 -0.0125 0.0720
Structural between-module strength -0.0045  0.0934.0479  0.9619 -0.1891 0.1802
Functional system segregation 1.6494 0.6340 @46 0.0103 0.3952 2.9035
Total effect for age (c path) -0.0062  0.0021 -2.9198 0.0041 -0.0104 2000

Table 3 continues
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Table 3, continued
Direct effect for age (¢’ path) -0.0030 0.0024 -1.2320 0.2201 -0.0078 1800

Mediation effect (a x b path interaction)

Structural global efficiency -0.0010 0.0019 — — -0.0048 0.0028
Structural local efficiency 0.0004 0.0019 — — -0.0034 0.0041
Structural average strength 0.0022 0.0020 — — -0.0011 0.0067
Structural within-module strength -0.0026  0.0022- — -0.0075 0.0012
Structural between-module strength 0.000D.0019 — — -0.0034 0.0042
Functional system segregation -0.0022  0.0010 — — -0.0045 -0.0004

Note.Due to three participants with missing psychometata,n = 140.a, b, c,= paths in mediation model as illustrated in Figdyre
with x as predictor variablg,as outcome variable, amdas mediatora = path from predictor to mediatdy;= path from mediator to
outcome, controlling foa path;c = total effect of predictorg’ = direct effect of predictor, controlling for matior; ab = interaction of
a andb paths representing indirect influencexas mediated by, effect = regression coefficient; SE = standardretrower/Upper
Cl = lower/upper bounds of 95% confidence interyastimated from bootstrap sampling with 10,000@am Significant effects are

presented in bold.
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Table 4
Mediation of Age-Functional System Segregatioliyple-BrainStructural Graph Variables

Effect SE t p Lower ClI  Upper CI

X = age;m =whole-brain structural graph variablgss functional system segregation

Age effect (a path)

Structural global efficiency -0.0962 0.0249 -xB5 0.0002 -0.1453 -0.0470
Structural local efficiency -0.0152  0.0037 -4.1483 0.0001 -0.0225 -0.0080

Structural average strength -3.4730 1.1482 -206  0.0030 -5.7430 -1.2030
Structural within-module strength -0.0895  0.0222 -4.0357 0.0001 -0.1334 -0.0457

Structural between-module strength  -0.0176 0.084 -4.0959 0.0001 -0.0261 -0.0091

Mediator to outcome (b path)

Structural global efficiency 0.0016  0.0027 ®B9 0.5522 -0.0037 0.0070
Structural local efficiency 0.0010 0.0160 0.06080.9516 -0.0307 0.0327
Structural average strength -0.0000  0.0001 5598  0.5765 -0.0002 0.0001
Structural within-module strength -0.0003 0.902 -0.1036 0.9176 -0.0060 0.0054
Structural between-module strength -0.0085 0.0126.6723 0.5025 -0.0333 0.0164

Table 4 continues
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Table 4, continued

Total effect for age (c path) -0.0013 0.0003 -4.7735 0MOO -0.0019 -0.0008

Direct effect for age (¢’ path) -0.0015 0.0003 -4.7889 (00M -0.0021 -0.0009

Mediation effect (a x b path interaction)

Structural global efficiency -0.0002 0.0003 — — -0.0007 0.0003
Structural local efficiency -0.0000 0.0002 — — -0.0005 0.0004
Structural average strength 0.0001  0.00062 — -0.0003 0.0006

Structural within-module strength 0.0000  0.0003— — -0.0005 0.0005
Structural between-module strength 0.0001  0.0062 — -0.0003 0.0007

Note. n= 143.a, b, c,= paths in mediation model as illustrated in Figliravithx (age) as the predictor variablg(functional system
segregationgs the outcome variable, andwhole-brain structural graph variables) as medstor path from predictor to mediator;
b = path from mediator to outcome, controlling &path;c = total effect of predictorg’ = direct effect of predictor, controlling for
mediator;ab = interaction ofa andb paths representing indirect influencexats mediated by, effect = regression coefficient; SE =

standard error; Lower/Upper CI = lower/upper bouotd35% confidence intervals, estimated from baatssampling with 10,000

samples. Significant effects are presented in bold.
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Table 5

Age-Related Effects for Individual Structural Magkiin Graph Theoretical Measures

B SE t

Local Efficiency F(8, 134) = 3.98*
Intercept 104.29229 18.92983 5.51%**
Left Occipitoparietal 2.88457 2.39740 1.20
Right Sensorimotor -1.83675 3.09747 -0.59
Left Temporal -2.17130 1.41775 -1.53
Left Frontal 3.88666 3.42036 1.14
Right Temporal -2.15465 1.44363 -1.49
Right Occipitoparietal 0.54483 1.92192 0.28
Right Frontal -6.18217 3.19185 -1.94
Left Sensorimotor -1.35082 3.32433 -0.41

Average Strength F(8, 134) = 6.57 ***
Intercept 81.18864 13.48654 6.02%**
Left Occipitoparietal 0.00190 0.00734 0.26
Right Sensorimotor -0.00586 0.01185 -0.49
Left Temporal -0.00004 0.00907 -0.00
Left Frontal 0.00534 0.01260 0.42
Right Temporal 0.02161 0.00811 2.67*
Right Occipitoparietal -0.01011 0.00691 -1.46
Right Frontal -0.03991 0.01255 -3.18**

Table 5 continues
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Table 5, continued

Left Sensorimotor 0.00977 0.01066 0.92

Between-Module Strength F(8, 134) = 5.01***

Intercept 84.18710 14.13182 5.96
Left Occipitoparietal -10.41637 3.24369 -3.21%**
Right Sensorimotor 1.40800 2.89122 0.49
Left Temporal -1.12334 1.68364 -0.67
Left Frontal -5.82625 4.08627 -1.43
Right Temporal -2.34705 1.67931 -1.40
Right Occipitoparietal 7.41496 3.14906 2.35
Right Frontal 7.64155 3.95221 1.93
Left Sensorimotor -0.22232 2.09323 -0.11

Within-Module Strength  F(8, 134) = 6.41***

Intercept 147.94979 18.03139 8.21%**
Left Occipitoparietal -0.35574 0.34412 -1.03
Right Sensorimotor -0.37518 0.38439 -0.98
Left Temporal 0.16945 0.19609 0.86
Left Frontal -0.30459 0.57252 -0.53
Right Temporal 0.11456 0.19559 0.59
Right Occipitoparietal -0.27214 0.31227 -0.87
Right Frontal -2. 00110 0.61113 -3.27**
Left Sensorimotor 0.21976 0.25177 0.87

Table 5 continues
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Table 5, continued

System Segregation F(8, 134) = 7.52***

Intercept 35.72535 96.04730 0.37

Left Occipitoparietal 306.21984 100.15202 63.0

Right Sensorimotor -111.12542 69.84089 -1.59
Left Temporal 144.24193 106.03042 1.36
Left Frontal 14251680  110.71806 1.29
Right Temporal 158.26074 92.95610 1.70

Right Occipitoparietal -360.44381 143.11664 522
Right Frontal -397.03790 92.57621 -4.29%**

Left Sensorimotor 114.35982 83.57336 1.37

Note. n= 143. In each model, the eight structural modulese simultaneous predictors of years
of age. Significance levels were Bonferroni-coreedor the five models tested across the five
graph theoretical measures.

* p < 0.05 (corrected)

** p < 0.01 (corrected)

*** n<0.001 (corrected)
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Table 6
Age-Related Effects for Individual Functional Maekiin Graph Theoretical Measures

B SE t

Local Efficiency F(6, 136) = 1.80

Intercept 41.31116 5.146996 8.03***
Sensorimotor 56.07201 55.46622 1.01
Posterior Default Mode  44.73170 64.13577 0.70
Limbic 30.23440 60.34445 0.50
Auditory -56.09747 59.58090 -0.94
Occipitoparietal -117.48682 63.71440 -1.84
Anterior Default Mode 66.17992 51.26892 1.29
Average Strength F(6, 136) = 1.67
Intercept 43.68244 6.90759 6.32***
Sensorimotor 0.10599 0.18766 0.56
Posterior Default Mode 0.06769 0.21881 0.31
Limbic 0.02701 0.20713 0.13
Auditory -0.32386 0.19929 -1.63
Occipitoparietal -0.08675 0.21428 -0.40
Anterior Default Mode 0.25262 0.14716 1.72
Between-Module Strength F(6, 136) = 1.90
Intercept 43.22746 6.32220 6.84***
Sensorimotor 123.32941 71.23761 1.73

Table 6 continues
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Posterior Default Mode -34.07876 58.51800 -0.58
Limbic 33.01096 79.79670 0.41
Auditory -68.39300 56.56471 -1.21
Occipitoparietal -7.62831 71.276211 -0.11
Anterior Default Mode  -24.12699 66.81465 -0.36
Within-Module Strength  F(6, 136) = 2.39
Intercept 50.117151 9.61299 5.21%**
Sensorimotor 12.563806 19.23348 0.65
Posterior Default Mode 9.630588  21.64333 0.44
Limbic 7.976398 21.98047 0.36
Auditory -32.700663 21.31006 -1.53
Occipitoparietal -42.584382 19.93200 -2.14
Anterior Default Mode 37.563381 15.59978 241
System Segregation F(6, 136) = 7.15***

Intercept 82.352863 8.99377 9.16***
Sensorimotor -18.320810  18.17476 -1.01
Posterior Default Mode ~ 37.084187  17.61200 2.11
Limbic -33.713374 18.21081 -1.85
Auditory -30.072195 19.90084 -1.51
Occipitoparietal -63.922704 15.18916 -4, 2] %**
Anterior Default Mode =~ 12.781443  21.30350 0.60

Table 6 continues
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Table 6, continued

Note. n= 143. In each model, the six functional modulesevggmultaneous predictors of years
of age. Significance levels were Bonferroni-coreecfor the five models tested across the five
graph theoretical measures.

* p < 0.05 (corrected)

** p< 0.01 (corrected)

*** n<0.001 (corrected)
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Figure Captions
Figure 1. Graph theoretical measures. Strength: the numbehidé matter streamlines,
estimated from DWI, between nodes (anatomical regaf interest), for structural data, or the
correlation of resting-state time series, betwesdtes, for functional data. Efficiency: the
number of edges that must be traversed to conweahddes, where fewer = better. System
Segregation: the degree to which modules (setggbfyhconnected nodes) are distinct from each
other, expressed as the ratio of within-module egtians to between-module connections. See
online version for color.
Figure 2. Image processing pipeline. See online versiomdbor.
Figure 3. Cognitive measures as a function of age;143. Fluid cognition is the factor score
for all nine cognitive tests, partialed for gendad WAIS vocabulary (A). Factor scores for
executive function (B), memory (C), and speed @¢, each based on three tests and then
partialed for the six remaining tests, plus geradel WAIS vocabulary, Bonferroni corrected for
four comparisons. See online version for color.
Figure 4. Mediation model for residual executive functiontiwmediators in parallel.
Significant mediators and effects are presentdabid.
Figure 5. Connectivity in the raw data matrices, for thosespaf nodes with a positive number
of white matter streamlines connecting them. Stmattconnectivity (A); functional connectivity
(B), and the correlation between structural ancttiomal connectivity as a function of age (C).
See online version for color.
Figure 6. Modules estimated from the averaged structural ectivity matrix. See online

version for color.
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Figure 7. Modules estimated from the averaged functional eotivity matrix. See online

version for color.
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Highlights

Graph theoretical measures characterize the topology of brain connectivity
Age-related decline in strength and efficiency of structura brain connectivity
Age-related decline in functional system segregation (module distinctiveness)
Functional system segregation mediates age-related decline in executive function

Structural connectivity exerts alimited constraint on functional connectivity
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