
Resting-state EEG Connectivity in Young Children with ADHD  
Sarah Furlong a, Jessica R. Cohen a, Joseph Hopfingera, Jenna Snydera,b,*, Madeline M. Robertson a, 
and Margaret A. Sheridan a,b 

aDepartment of Psychology and Neuroscience, University of North Carolina at Chapel Hill; bDivision of Developmental Medicine, Boston 
Children’s Hospital  

ABSTRACT 
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and impairing 
neurodevelopmental disorder. While early childhood is a crucial time for early intervention, it is 
characterized by instability of ADHD diagnosis. Neural correlates of ADHD have potential to 
improve diagnostic accuracy; however, minimal research has focused on early childhood. 
Research indicates that disrupted neural connectivity is associated with ADHD in older children. 
Here, we explore network connectivity as a potential neural correlate of ADHD diagnosis in early 
childhood. 
Method: We collected EEG data in 52 medication-naïve children with ADHD and in 77 typically 
developing controls (3–7 years). Data was collected with the EGI 128 HydroCel Sensor Net System, 
but to optimize the ICA, the data was down sampled to the 10-10 system. Connectivity was 
measured as the synchronization of the time series of each pair of electrodes. Subsequent 
analyses utilized graph theoretical methods to further characterize network connectivity. 
Results: Increased global efficiency, which measures the efficiency of information transfer across 
the entire brain, was associated with increased inattentive symptom severity. Further, this associa-
tion was robust to controls for age, IQ, SES, and internalizing psychopathology. 
Conclusions: Overall, our findings indicate that increased global efficiency, which suggests 
a hyper-connected neural network, is associated with elevated ADHD symptom severity. These 
findings extend previous work reporting disruption of neural network connectivity in older 
children with ADHD into early childhood.      

Attention-deficit/hyperactivity disorder (ADHD) is 
a highly prevalent neurodevelopmental disorder, 
affecting 3–7% of the population (Danielson et al., 
2017; Polanczyk et al., 2014; Visser et al., 2014). 
ADHD diagnosis confers an increased risk of social, 
academic, and substance use problems and is asso-
ciated with continued impairment into adulthood 
(Loe & Feldman, 2007; Wehmeier et al., 2010; 
Wilens et al., 2011). 

Despite agreement across numerous studies that the 
prevalence rate of ADHD is about 6% worldwide 
(Polanczyk et al., 2014), diagnostic rates (i.e., the rates 
at which children receive a diagnosis) are much more 
variable. Broadly, evidence suggests that diagnosis of 
ADHD is not standard across different populations 
defined by gender, age, race and ethnicity. Diagnosis 
of ADHD in early childhood (e.g., less than 8 years old) 
is highly unstable, with rates of remission or partial 
remission as high as 50% in this age range (Campbell 
& Ewing, 1990; Law et al., 2014; McGee et al., 1991; 

Tandon et al., 2011). It may be that in early childhood 
parental report of ADHD symptoms is less accurate, 
primarily because many of the diagnostic criteria are 
hard to separate from normative behaviors during this 
developmental period (Smidts & Oosterlaan, 2007). 
Developing biological indicators of ADHD to compli-
ment current diagnostic criteria would be beneficial for 
improving diagnosis, particularly in early childhood. 

The initial step toward this goal is to identify neural 
markers of ADHD symptomatology, e.g., increased 
inattention and hyperactivity. Broadly, network dys-
function has been observed in individuals with 
ADHD across multiple networks that are implicated 
in higher-level cognitive functions (Castellanos & 
Proal, 2012; Henry & Cohen, 2019; Konrad & 
Eickhoff, 2010; Liston et al., 2011; Qiu et al., 2011). 
Recent work has applied increasingly sophisticated ana-
lytic methods to enhance our understanding of which 
aspects of neural connectivity are disrupted in indivi-
duals with ADHD. In particular, graph theoretical 
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methods, which utilize a mathematical framework for 
understanding network organization, have proven to be 
particularly useful for advancing our understanding of 
brain connectivity in typical and atypical populations 
(Fornito et al., 2015; Meunier et al., 2010; Petersen & 
Sporns, 2015; Sporns & Betzel, 2016; Vértes & 
Bullmore, 2015). Previous work using fMRI has 
employed graph theoretical techniques to characterize 
differences in functional connectivity between older 
children with and without ADHD (Henry & Cohen, 
2019). In these prior studies, children with ADHD had 
increased modularity, decreased global efficiency, and 
increased local efficiency in comparison to typically 
developing (TD) controls of the same age (Beare 
et al., 2017; Cao et al., 2013; Henry & Cohen, 2019; 
Lin et al., 2014; Wang et al., 2009). Taken together, 
these studies suggest that in middle childhood and 
adolescence, children with ADHD have increased seg-
regation and decreased integration compared to TD 
children (Beare et al., 2017; Cao et al., 2013; Henry & 
Cohen, 2019; Lin et al., 2014). Increased segregation 
indicates that local information is not being processed 
effectively due to hyper-connectivity within subnet-
works. This may impact processing speed even for 
fairly low-level cognitive functions. Decreased integra-
tion indicates that a network is displaying inefficient 
long-range communication, which is crucial for higher- 
level cognitive functions. This includes executive func-
tion, a set of cognitive abilities which are commonly 
impaired in individuals with ADHD (Baum et al., 2017; 
Marek et al., 2015). Overall, previous work with chil-
dren 8 years old and older has suggested that dysfunc-
tional integration and segregation of brain connectivity, 
as characterized by modularity, local efficiency, and 
global efficiency, are neural correlates of ADHD. 
Importantly, this approach has not been explored in 
early childhood. 

While work with older children has primarily uti-
lized fMRI, particularly for connectivity analyses, there 
is a rich history of work applying EEG metrics in 
studies of ADHD. Furthermore, given the ease and 
expense of acquiring resting-state EEG (rsEEG), it 
could be used more easily in complement to other 
metrics (self-report, behavioral observations) when 
translating this area of research into clinical use. 
Previous rsEEG studies of older children with ADHD 
have found differences in coherence, a measure of the 
synchronicity of oscillating brain activity that underlies 
functional brain networks (Ahmadlou & Adeli, 2010; 
Alba et al., 2016; Barry et al., 2011, 2002; Bowyer, 2016; 
Clarke et al., 2007; Robbie et al., 2016). However, in 
these studies differences have been observed in alpha, 
beta, theta, and delta frequency bands (Ahmadlou & 

Adeli, 2010; Alba et al., 2016; Barry et al., 2011, 2002; 
Clarke et al., 2007; Robbie et al., 2016). Studies also 
report both increased and decreased coherence values 
in children with ADHD, depending on the specific 
method used to calculate coherence and which fre-
quency band was examined (Ahmadlou & Adeli, 2010; 
Alba et al., 2016; Barry et al., 2011, 2002; Robbie et al., 
2016). Overall, existing work examining coherence 
indicates that children with and without ADHD differ 
in regards to neural network connectivity, but does not 
provide a clear understanding of the network organiza-
tion properties that differ. Ample evidence from studies 
utilizing traditional EEG methods indicates that differ-
ences in alpha power (approximately 8–13 Hz) distin-
guish between individuals with ADHD in studies of 
both children and adults with ADHD when compared 
to TD individuals (Barry et al., 2003; Hale et al., 2010, 
2009; Koehler et al., 2009; Robbie et al., 2016). 
Furthermore, previous work in the sample included in 
the current paper also identified that alpha power dis-
tinguishes between ADHD and TD groups and is asso-
ciated with increased symptom severity (Furlong et al., 
2020; Robertson et al., 2019). The application of graph 
theoretical methods to this population early in child-
hood has potential to resolve inconsistent findings in 
studies of rsEEG coherence in this population and build 
upon previous work implicating the alpha band in 
ADHD symptomatology. 

Importantly, ADHD is highly comorbid with both 
internalizing and externalizing disorders (Angold et al., 
1999) and increased levels of comorbid externalizing 
and internalizing symptoms are associated with greater 
ADHD symptom severity (Connor et al., 2003). For 
example, individuals with ADHD have a greater like-
lihood of being diagnosed with or displaying behaviors 
and symptoms consistent with oppositional, conduct, 
and substance use disorders (S. S. Lee et al., 2008; 
Murphy & Barkley, 1996) and ample evidence suggests 
that the etiology of externalizing disorders overlaps with 
the etiology of ADHD (Beauchaine et al., 2010; Cosgrove 
et al., 2011). This overlap is evident in regard to neural 
correlates: previous research suggests that dysfunctional 
network connectivity between prefrontal and subcortical 
regions underlies externalizing psychopathology in chil-
dren and adolescents (Finger et al., 2012; Hwang et al., 
2016; White et al., 2015). Conversely, although studies 
have placed the prevalence of anxiety disorders comor-
bid with ADHD at 15–35%, (Schatz & Rostain, 2006), 
previous research has identified distinct neural correlates 
that underlie internalizing and externalizing forms of 
psychopathology, such that internalizing disorders are 
less likely to share neural correlates with ADHD and 
other externalizing disorders (Hinton et al., 2019; 
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Moadab et al., 2010). In follow up analyses, we control 
for internalizing and externalizing symptoms in signifi-
cant models. 

In the present study we use graph theoretical meth-
ods to characterize the properties of the neural net-
works, which are calculated from the measurement of 
synchronization of signal between pairs of electrodes 
during rsEEG. As with previous studies of children with 
ADHD, we expect to observe network dysfunction in 
children with ADHD in early childhood compared to 
age and gender matched controls. Further, we expect 
that increased dysfunction in measures of network 
structure will be associated with increased symptom 
severity. Dysfunction in network connectivity will be 
measured by (1) calculating the weighted phase lag 
index (WPLI), which measures the synchronization of 
the time series of each pair of electrodes, and (2) 
applying graph theoretical methods to the network 
connectivity matrices to characterize the extent to 
which the networks are globally communicating (inte-
gration) and locally communicating (segregation). If 
the neural development of ADHD in young children 
is consistent with that of older children with ADHD, 
we predict that in the alpha frequency band the chil-
dren with ADHD in our study will show increased 
network segregation, characterized by increased mod-
ularity and local efficiency, and decreased network 
integration, characterized by decreased global effi-
ciency, in comparison to TD children. Lastly, if local 
and global efficiency in the alpha band are related to 
ADHD specifically, we expect these findings to be 
robust to controls for internalizing or externalizing 
symptoms. 

Methods 

Participants 

A sample of 52 medication naïve children with ADHD 
and 77 typically developing controls (3 years, 
0 months–7 years, 4 months) from a larger sample of 
150 children, which included children with ADHD that 
were not medication naïve, participated in the current 
study. Participants were recruited from community 
events, schools, a database of families who had 
expressed interest in research compiled by the Labs of 
Cognitive Neuroscience at Boston Children’s Hospital, 
and from a database of participants who were seen for 
ADHD at Boston Children’s Hospital. All study proce-
dures were approved by the Institutional Review Board 
at Boston Children’s Hospital and complied with the 
Helsinki Declaration. The primary caregiver of each 
child participant provided informed consent and each 

child provided verbal assent. This data was collected as 
part of an ongoing longitudinal study of stability of 
ADHD diagnosis in young children. 

Inclusion/Exclusion Criteria 
Exclusion criteria included history of known chromo-
somal abnormalities such as fragile X or down syn-
drome, prenatal substance exposure as reported in 
medical records or by caregivers, presence of autism 
spectrum disorder, lack of English language compre-
hension, sub-threshold symptoms (4 or 5 out of 9 
symptoms) of ADHD on the Swanson Nolan and 
Pelham checklist (SNAP-4) (Swanson, 1992), or psy-
chotropic medication use, including previous or cur-
rent use of ADHD medications. Of the total sample 
(N = 150), 6 participants were removed from the ana-
lyses because they did not meet our inclusion/exclusion 
criteria. Of those that were removed, 3 participants 
were excluded because their caregivers reported genetic 
abnormalities or prenatal exposure to substances, 1 
participant was excluded because of a parent report of 
a diagnosis of autism spectrum disorder that was con-
firmed during initial assessments for the study, 1 parti-
cipant was excluded because their parent did not speak 
English and could not comprehend the study proce-
dures, and 1 participant was using psychotropic medi-
cation at the time of participation. An additional 13 
participants had unusable EEG data due to movement 
artifacts, which were determined to be artifacts based 
on visual evaluation by a trained technician, and were 
not included in the final analyses (6 ADHD, 7 Control). 
One participant was excluded due to refusal to partici-
pate in the study after the time of consent. The final 
sample of 129 participants included 52 children who 
met criteria for ADHD and were medication-naïve and 
77 TD controls who did not meet criteria for ADHD. 
All of these participants completed eyes-open (EO) and 
eyes-closed (EC) data collection, but N = 2 controls and 
N = 2 ADHD participants had unusable EC data. 
Thus, EC analyses included 50 medication-naïve 
children in the ADHD group and 75 TD controls. Age 
and gender did not differ between groups for EO (age: t 
(127) = 0.25, p = .80, gender: X2(1,N = 129) = 2.04, 
p = .15) or EC (age: t(125) = 0.20, p = .84, gender: X2(1, 
N = 125) = 2.02, p = .16). See Table 1 for demographic 
variables. 

ADHD Diagnosis 
ADHD diagnosis was determined at the study visit. 
Caregivers reported symptoms of ADHD on the 
Diagnostic Structured Interview Schedule – young child 
version (DISC-IV) (Shaffer et al., 2000), the Achenbach 
child behavior checklist (CBCL) (Achenbach, 1991b) 

JOURNAL OF CLINICAL CHILD & ADOLESCENT PSYCHOLOGY 3 



and the SNAP-4. If children met diagnostic criteria on 
the DISC-IV (N = 42) they were included in the ADHD 
group. There were an additional N = 6 children who 
received a sub-threshold diagnosis on the DISC-IV and 
met clinical thresholds on the CBCL (t-score on the 
attention problems subscale above 70) or the SNAP-4 
(caregiver indicated they had 6/9 inattention or hyper-
activity symptoms “quite a bit” or “very much”) and 
N = 4 children, who met criteria on both the SNAP 
and CBCL. These children (N = 10) were also included 
in the ADHD group. To be included in the TD group, 
children had to have 3 or fewer symptoms of inattention 
and hyperactivity on the SNAP-4. There were two 
ADHD participants that did not have EC data, but 
were still included in the EO group. There was one TD 
participant with EO data only and one TD participant 
with EC data only. 

To corroborate diagnostic status, teacher report of 
symptoms was assessed in 41% of all participants 
(N = 53) in the EO condition and 42% of all partici-
pants (N = 53) in the EC condition using either the 
Achenbach Teacher Report Form (TRF) or the 
Conners-3 Teacher Rating Scale (Achenbach, 1991a; 

Conners, 2001). Teacher report was available on 
a minority of participants because teachers found it 
difficult to make time to complete the checklist despite 
being remunerated for their participation. See Tables 2 
and 3 for ADHD symptoms on the DISC, CBCL, 
SNAP-4, TRF, and Conners-3 by group membership 
in the EO and EC conditions. 

Covariates 
To control for potential confounds, covariates included 
measures of socioeconomic status (SES), age, and IQ. SES 
was measured via each family’s income to needs ratio, 
which was calculated based upon their reported income 
on the MacArthur Subjective Social Status questionnaire 
(Adler et al., 2000) and the poverty income threshold for 
their household. Age was measured in months of age at 
the time of participation. The Wechsler Preschool and 
Primary Scale of Intelligence, Third Edition (WPPSI-III) 
performance IQ (PIQ) composite was used as a measure 
of IQ (Wechsler, 2002). There were significant group 
differences for SES and PIQ for participants in the EO 
condition (for SES, t(117) = 2.11, p = .04; for PIQ, t 
(126) = 2.10, p = .04). In addition, bivariate correlations 

Table 1. Group demographics.  
Eyes-open data Eyes-closed data  

TD ADHD TD ADHD 

Female 42.8 (33) 28.8 (15) 41.6 (32) 28.0 (14) 
Dominant Hand (Right) 90.9 (70) 90.4 (47) 92.2 (71) 88.0 (44) 
Race 

White 
Black/African American 
Asian 
Other/Multiracial 

62.3 (48) 
14.3 (11) 

6.5 (5) 
16.9 (13) 

65.4 (34) 
21.2 (11) 

0 (0) 
13.5 (7) 

62.3 (48) 
16.9 (13) 

6.5 (5) 
14.3 (11) 

62.0 (31) 
22.0 (11) 

0 (0) 
16.0 (8) 

Hispanic/Latino 5.2 (4) 15.4 (8) 5.2 (4) 20.0 (10) 
Age (months) 68.14 ± 14.83 67.48 ± 14.80 68.23 ± 14.78 67.70 ± 14.62 

Values are percentage of total group, with the raw number in parentheses; age is expressed as mean ± SD.  

Table 2. Distribution of ADHD, ODD, CD, and internalizing symptoms in the eyes-open sample.    
Group differences  

TD ADHD t-value p-value 

ADHD measures      
DISC ADHD symptoms (0–23) 3.87 ± 3.94 (69) 16.26 ± 4.20 (50) −16.19 <.001*  
CBCL ADHD subscale t-score 51.28 ± 2.52 (75) 65.49 ± 7.09 (51) −13.74 <.001*  
SNAP-IV total (0–20) 1.77 ± 2.4 (74) 11.72 ± 4.27 (50) −14.97 <.001*  
Conners – Teacher Form  

Inattentive t-score  
Hyperactivity t-score  

49.39 ± 10.47 (18) 
56.19 ± 16.72 (16)  

61.25 ± 11.77 (16) 
74.69 ± 12.97 (16)  

−3.09 
−3.50  

.004* 

.002*  
TRF ADHD subscale t-score 53.00 ± 4.33 (12) 58.85 ± 11.91 (6) −1.16 .29 

Additional externalizing disorders  
DISC ODD symptoms 5.32 ± 3.4 (68) 5.94 ± 2.84 (48) −1.06 .29  
DISC CD symptoms 0.64 ± 1.32 (67) 1.17 ± 1.76 (50) −1.78 .08 

Internalizing disorders  
CBCL internalizing subscale t-score 45.78 ± 10.06 (74) 55.67 ± 9.8 (51) −5.48 <.001*  
DISC GAD symptoms 1.57 ± 1.72 (68) 1.34 ± 2.02 (50) 0.66 .51  
DISC depression symptoms 2.75 ± 2.4 (68) 3.22 ± 2.77 (50) −0.96 .34 

Values are means ± SD, with the number of participants with scores for each measure in parentheses. As expected, the ADHD group had significantly more 
ADHD symptoms compared with the typically developing control group, with the exception of the Teacher Report Form (TRF), which was completed in 
a small number of total cases. There was a significant difference in internalizing subscale t-scores on the CBCL, and this measure was included in the 
regression models as a covariate. DISC, Diagnostic Structured Interview Schedule – young child version; CBCL, Child Behavior Checklist; SNAP-IV, Swanson 
Nolan and Pelham checklist; ODD, Oppositional Defiant Disorder; CD, Conduct Disorder; GAD, Generalized Anxiety Disorder. *p < 0.05  
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revealed associations between age, PIQ, and SES with 
either inattentive or hyperactive symptoms (see Table 
4). Further, given previous evidence that these factors, 
and SES in particular, can impact brain structure and 
function in such a way that elevates the risk for increased 
ADHD symptoms (Machlin et al., 2020), they were 
included in the regression models to ensure robustness 
of the findings. 

Procedure 

EEG Acquisition 
Children completed an rsEEG recording. EEG data 
were collected for a total of seven minutes, split into 
three and a half minutes each for EO and EC condi-
tions. The recordings were collected over seven inter-
vals, during which the participants alternated between 
30 seconds of EO data collection, 15 second breaks, and 
30 seconds of EC data collection (Vuga et al., 2008). 
This approach, previously utilized by Vuga et al., was 
chosen due to the young age of the children 

participating in the study and to maximize the amount 
of data collected without artifact. During the EO con-
dition, the participants were instructed to sit as still as 
possible while directing their attention toward 
a cartoon image of open eyes. During the EC condition, 
participants were instructed to sit quietly and calmly 
with their eyes closed. A research assistant accompa-
nied each child for the duration of EEG data collection 
to maintain motivation and cooperation during data 
acquisition. In this paper we present data from both 
the EO and EC conditions. 

EEG recordings were collected using a 128 HydroCel 
Sensor Net System (EGI, Inc, Eugene, OR). The net was 
comprised of an elastic tension structure forming 
a geodesic tessellation of the head surface. At each 
vertex is a sensor pedestal housing an Ag/AgCl- coated, 
carbon-filled plastic electrode and sponge. Prior to fit-
ting the cap on the participant, the net was soaked in an 
electrolyte solution (6 cc KCl/liter distilled water) in 
order to facilitate electrical contact between the scalp 
and the electrode. The child’s head was measured and 
marked in the center using a wax pencil to ensure 
proper placement across participants. Once placed 
over the scalp, impedance for each electrode was 
checked using NetStation software. To decrease impe-
dance, electrodes were re-wet with the electrolyte solu-
tion and firmly placed in close contact with the scalp 
(moving aside hair). The process of attempting to 
decrease impedance continued until less than 10% of 
the 128 electrodes had impedances less than 50 mV. 
EEG data was acquired using NetAmps 200 Amplifiers 
and the NetStation software. The data were amplified, 
filtered (bandpass 0.1 to 100.0 Hz), and sampled at an 
effective rate of 250 Hz. They were digitized with a 12- 

Table 3. Distribution of ADHD, ODD, CD, and internalizing symptoms in the eyes-closed sample.    
Group differences  

TD ADHD t-value p-value 

ADHD measures      
DISC ADHD symptoms (0–23) 3.87 ± 3.94 (69) 16.16 ± 4.19 (49) −16.10 <.001*  
CBCL ADHD subscale t-score 51.19 ± 2.44 (75) 65.61 ± 6.99 (49) −13.90 <.001*  
SNAP-IV total (0–20) 1.77 ± 2.4 (74) 11.58 ± 4.26 (48) −14.55 <.001*  
Conners – Teacher Form  

Inattentive t-score  
Hyperactivity t-score  

49.24 ± 10.77 (17) 
56.93 ± 17.03 (16)  

61.25 ± 11.77 (16) 
74.69 ± 12.97 (16)  

−3.05 
−3.25  

.005 

.003  
TRF ADHD subscale t-score 52.77 ± 4.23 (13) 58.83 ± 11.91 (6) −1.21 .27 

Additional externalizing disorders  
DISC ODD symptoms 5.00 ± 3.14 (66) 6.49 ± 3.08 (49) −2.54 .01*  
DISC CD symptoms 0.47 ± 1.26 (68) 1.32 ± 1.67 (48) −2.99 .004* 

Internalizing disorders  
CBCL internalizing subscale t-score 45.76 ± 10.08 (74) 55.49 ± 9.79 (49) −5.34 <.001*  
DISC GAD symptoms 0.93 ± 1.23 (68) 2.20 ± 2.25 (49) −3.60 <.001*  
DISC depression symptoms 1.94 ± 2.3 (68) 4.29 ± 2.27 (49) −5.47 <.001* 

Values are means ± SD, with the number of participants with scores for each measure in parentheses. As expected, the ADHD group had significantly more 
ADHD symptoms compared with the typically developing control group, with the exception of the Teacher Report Form (TRF), which was completed in 
a small number of total cases. There was a significant difference in internalizing subscale t-scores on the CBCL, as well as on measures of ODD, CD, GAD, 
and depression on the DISC. DISC, Diagnostic Structured Interview Schedule – young child version; CBCL, Child Behavior Checklist; SNAP-IV, Swanson Nolan 
and Pelham checklist; ODD, Oppositional Defiant Disorder; CD, Conduct Disorder; GAD, Generalized Anxiety Disorder. *p < 0.05  

Table 4. Bivariate correlations of variables of interest.  
DISC-IN DISC-HI Age PIQ SES 

DISC-IN – 0.72* 0.05 −0.22* −0.22* 
DISC-HI  – −0.28* −0.12 −0.36* 
Age   – −0.07 0.21* 
PIQ    – 0.17 
SES      

Results of bivariate correlations of variables of interest (inattentive symp-
toms and hyperactivity symptoms on the DISC-IV) and potential con-
founds (age, IQ, and SES, measured as income to needs ratio). All three 
potential confounds were significantly correlated with the at least one of 
the variables of interest, thus, they were included in the subsequent 
regression analyses. DISC-IN, DISC Inattentive Symptoms; DISC-HI, DISC 
Hyperactivity/Impulsivity Symptoms; PIQ, WPPSI-III performance IQ; SES, 
socioeconomic status. *p < 0.05  
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bit National Instruments Board (National Instruments 
Corp., Woburn, MA). 

EEG Preprocessing 
Using NetStation, EEG data were re-referenced using 
an average reference that was applied after excluding 
the most radial channels, including those in close 
proximity to the eye, as these channels were most 
prone to artifact and were not used in subsequent 
analyses (Umilta’ et al., 2012). Using an average refer-
ence has been shown to yield low re-referencing errors 
when using high-density EEG data (Liu et al., 2015). 
Additional electrodes were excluded if they were out-
side of a ± 80 mV range, which is a typical threshold for 
detecting eye blinks and captures the typical eye blink 
deflection range of 50–100 mV (Luck, 2014). Data seg-
ments were included if there were no artifacts outside 
of ± 80 mV. Any potential remaining artifacts would be 
less distinct than eye blink artifacts that exceed that 
threshold, and thus it is better practice to leave these 
for removal during an Independent Component 
Analysis (Luck, 2014). For each participant, data was 
exported to Matlab (http://www.mathworks.com/pro 
ducts/matlab/) for further analysis. All subjects had 
60–150 seconds of data in the EO condition (except 
for one ADHD participant with 30 seconds) and 
30–210 seconds in the EC condition. Groups did not 
have different lengths of data in EO, t(74.12) = 1.82, 
p = .07 (ADHD group: M = 110.56, SD = 21.26; TD 
group: M = 116.49, SD = 12.30) or EC, t(125) = −1.09, 
p = .28 (ADHD group: M = 112.57, SD = 27.07; TD 
group: M = 107.50, SD = 24.62). The average amount of 
data exported for all participants in the EO condition 
was 114.10 seconds and 109.49 seconds in the EC 
condition. 

Independent component analysis. In order to further 
remove noise contributions to the signal, we conducted 
an independent component analysis (ICA). In Matlab, 
prior to conducting an ICA, we ran a high pass filter at 
1 Hz, as this has been found to consistently improve 
results in terms of signal-to-noise ratio and classifica-
tion accuracy (Winkler et al., 2015). The ICA was 
conducted using the infomax ICA algorithm imple-
mented in EEGLAB (Delorme & Makeig, 2004; Onton 
& Makeig, 2006). 

In order to reduce highly correlated signal from 
nearby electrodes, we down-sampled to the 10–10 
international electrode system, resulting in 71 electrode 
channels (Onton & Makeig, 2006). In order to inform 
decisions about which components are artifacts and 
which are neural components, we utilized the 
Multiple Artifact Rejection Algorithm (MARA), an 

open-source EEGLAB plug-in that automatizes the pro-
cess of labeling components for artifact rejection 
(Winkler et al., 2014, 2011). A trained researcher (SF) 
reviewed the decisions made by MARA for all compo-
nents that accounted for more than 1% of the variance. 
Due to the previous findings in children with ADHD 
across studies and within traditional power analyses in 
the current sample, the remaining analytic steps were 
conducted within the alpha frequency band, defined as 
8–12 Hz in accordance with previous studies (De 
Munck et al., 2009; Gasser et al., 2003; Shackman 
et al., 2010). 

Statistical Methods 
After completion of data cleaning, data was exported 
from EEGLAB into FieldTrip (Oostenveld et al., 2011) 
for further analysis. 

Weighted Phase Lag Index. Functional connectivity 
measures the temporal synchronization between brain 
regions or signals of brain activity (Bartolomei et al., 
2006; L. Lee et al., 2003). In order to account for 
volume conduction in EEG data, it is necessary to 
utilize a synchronization measure that does not rely 
on correlations or partial correlations (Stam et al., 
2007). Weighted Phase Lag Index (WPLI) is one such 
measure of the synchronization of neural signal that 
addresses these problems when assessing functional 
connectivity with EEG (see Ortiz et al., 2012 for an 
application of WPLI; see Vinck et al., 2011 for 
a detailed review). 

WPLI measures the asymmetry in the distribution of 
the phase differences obtained from the instantaneous 
phases of the two time series, and critically, in WPLI 
the contribution of the observed phase leads and lags is 
weighted by the magnitude of the imaginary compo-
nent of the cross-spectrum. WPLI was calculated as 
defined by Vinck and colleagues (see Vinck et al., 
2011). Using FieldTrip, WPLI was calculated for each 
pair of electrodes for every participant, resulting in 
WPLI matrices (71 electrodes × 71 electrodes, with 
WPLI values in each cell) for all participants. Next, 
graph theoretical methods were applied to the matrices 
in order to analyze characteristics of the networks. 

Graph theoretical metrics. Using graph theoretical 
methods, the network of interest is divided into nodes 
and edges. In the current study the nodes were the 
electrodes and the edges were defined as the WPLI 
values between two electrodes. There are a multitude 
of measures to examine within graph theory; based on 
previous work, we focused on the following 3 measures: 
modularity, global efficiency, and local efficiency. We 
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performed these analyses using the Brain Connectivity 
Toolbox (BCT) (Rubinov & Sporns, 2010). 
Modularity. Modularity is the ratio of the number of 
within-module connections to the number of expected 
within-module connections in a random network 
(Cohen & D’Esposito, 2016; Rubinov & Sporns, 2010; 
Sporns, 2013). The extent of modularity (measured 
from 0 to 1) can be described as a spectrum ranging 
from more integrated to more segregated (Sporns, 
2013). Segregation refers to strong interconnectivity 
within modules, which results in efficient local proces-
sing. Integration refers to increased connections across 
modules, which represents global processing. 
Modularity was calculated using the BCT algorithm 
(see Rubinov & Sporns, 2010). We used the Louvain 
Method for community detection, which maximizes 
network modularity (De Meo et al., 2011). The struc-
ture (and thus modularity) of the network is deter-
mined by subdividing the network into groups of 
nodes, with a maximally possible number of within- 
group edges, and a minimally possible number of 
between-group edges (Rubinov & Sporns, 2010). 
Global efficiency. In order to further evaluate differ-
ences in the integration of the neural networks of 
children with ADHD and TD children, we examined 
global efficiency, which measures the efficiency of 
information transfer among all pairs of nodes (electro-
des in this case) in the graph, and thus reflects the 
efficiency of interaction across the whole graph (De 
Pasquale et al., 2016; Rubinov & Sporns, 2010). Global 
efficiency was also calculated using the BCT algorithm 
(see De Pasquale et al., 2016; Rubinov & Sporns, 2010). 
Local efficiency. To further assess for and characterize 
differences in the segregation of neural networks of 
children with ADHD compared to TD children, we 
calculated local efficiency, which measures the effi-
ciency of information transfer limited to neighboring 
nodes (i.e., nodes with a direct connection to the node 
of interest) (Cohen & D’Esposito, 2016; Rubinov & 
Sporns, 2010; Sporns, 2013). Local efficiency was calcu-
lated using the BCT algorithm (see Latora & Marchiori, 
2001; Rubinov & Sporns, 2010). 
Network costs. In network analyses it is appropriate to 
threshold the network in order to analyze a sparse network 
that most closely represents the density of connection of 
human and non-human nervous systems, by focusing on 
the strongest functional connections in the network 
(Achard & Bullmore, 2007). All analyses were conducted 
over a range of costs (10–30%, in 5% increments) to ensure 
that any results were not due to a specific threshold. The 
range of thresholds was chosen based upon the range of 
values that have been shown to produce graphs with small 
world characteristics (Bullmore & Bassett, 2011). Results 

reported in this paper are for matrices created with 
weighted thresholds (e.g., the edge values were maintained 
after each threshold was performed). 

Statistical testing. We conducted independent 2-sam-
ple t-tests to test for group differences (TD vs. ADHD) 
for modularity, global, and local efficiency in each 
frequency band. Additionally, multiple linear regres-
sions were conducted in order to test if graph metrics 
were associated with symptom severity (total inatten-
tive symptoms and total hyperactive/impulsive symp-
toms), while controlling for age, SES, and PIQ. To 
probe the impact of development on network organiza-
tion in children with ADHD as compared to TD chil-
dren, we tested for age x graph metric interactions in 
separate regression models in which age and graph 
metrics (modularity, global efficiency, and local effi-
ciency) were predictors of symptom severity (inatten-
tive symptoms and hyperactivity symptoms). In 
addition, for models with significant associations of 
ADHD symptoms with network metrics, we control 
for internalizing symptoms to test the robustness of 
the correlates as a unique measure of ADHD in early 
childhood. All tests were conducted for both EO and 
EC data. For each significant finding, we report 
whether it remained significant after controlling for 
multiple comparisons using False Discovery Rate 
(FDR). 

Results 

To confirm that the data in the current study consisted 
of typical EEG power spectra, we plotted the average 
spectra, across all participants (Figure 1). This con-
firmed that the data were what would be expected 
from an rsEEG task, and that across all participants 
the peak power was in the alpha band, as has been 
found across populations (Grandy et al., 2013). Effect 
sizes are reported with findings as well (cohen’s d for 
t-tests, standardized beta values for regressions). 

Modularity 

Group Differences 
T-tests revealed that there were no significant differ-
ences in modularity between the ADHD group and the 
TD group when averaging across all network costs in 
alpha in EO, t(126) = 0.74, p = .46, 95%CI [−0.01,0.03], 
d = 0.13, or EC, t(125) = 0.46, p = .65, 95%CI [−0.02,0.03], 
d = 0.08. 
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ADHD Symptoms 
Controlling for age, SES, and PIQ, modularity was not 
significantly associated with symptoms of inattention 
or hyperactivity when averaging across all network 
costs in alpha in EO (inattention: β = −0.06, p = .52, 
hyperactivity: β = 0.07, p = .48) or EC (inattention: 
β = −0.02, p = .85, hyperactivity: β = 0.001, p = .99). 

Global Efficiency 

Group Differences 
There were no significant differences in global efficiency 
between the ADHD group and the TD group when aver-
aging across all network costs in alpha in EO, t 
(90.53) = −1.77, p = .08, 95%CI [−0.02,0.001], d = 0.33, or 
EC, t(122.33) = −1.57, p = .12, 95%CI [−0.02,0.003], 
d = 0.27. 

ADHD Symptoms 
Controlling for age, SES, and PIQ, multiple linear 
regression models revealed a significant association of 
increased global efficiency in alpha in EO with 
increased symptoms of inattention when averaging 
across all network costs (β = 0.20, p = .03) and at 3 
out of 5 network costs (all p’s<0.05; see Figure 2). After 
FDR correction for multiple comparisons, this finding 
remained significant at the 3 network costs. There were 
no significant associations of global efficiency in EO 
with symptoms of hyperactivity and impulsivity when 
averaging across all network costs (β = 0.13, p = .14). 

Controlling for age, SES, and PIQ, multiple linear 
regression models revealed a significant association of 
increased global efficiency in alpha in EC with 
increased symptoms of inattention when averaging 
across all network costs (β = 0.28, p = .01) and at 4 
out 5 network costs (all p’s<0.05, see Figure 3). After 
FDR correction, this finding remained significant at all 
4 costs. There was also a significant association of 
global efficiency in EC with symptoms of hyperactivity 
and impulsivity when averaging across all network 
costs (β = 0.22, p = .04) and at 2 of 5 network costs 
(both p’s = 0.03). However, this finding was no longer 
significant after FDR correction and findings at only 2 
costs or less are often considered to be spurious. 

Local Efficiency 

Group Differences 
T-tests revealed that there were no significant differ-
ences in average local efficiency between the ADHD 
group and the TD group when averaging across all 
network costs in alpha in EO, t(127) = 0.16, p = .87, 
95%CI [−0.01,0.01], d = 0.03, or EC, t(124.28) = −0.85, 
p = .40, 95%CI [−0.03,0.01], d = 0.14. 

ADHD Symptoms 
Controlling for age, SES, and PIQ, multiple linear regres-
sion modeling revealed that increased average local effi-
ciency in alpha was not associated with increased 
symptoms of inattention in EO or EC when averaging 
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Figure 1. Average power spectra across all participants. 
Note. The average power spectra, calculated across all participants to confirm that the data used in the current analysis include the expected 
peak in the alpha band. 
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across all network costs (EO: β = 0.08, p = .38; EC: 
β = 0.18, p = .11). In the EC condition, there was a sig-
nificant association of increased local efficiency with 
increased inattentive symptoms at one network cost 
(β = 0.23, p = .04), but this was not significant after FDR 
correction. There were no significant associations of local 
efficiency with symptoms of hyperactivity and impulsivity 
when averaging across all network costs in EO (β = −0.01, 
p = .93) or EC (β = 0.12, p = .29). 

Interaction with Age 

Further analyses were conducted to probe the impact of age 
on the results reported above. Since the significant results 
above were only present in the relationship of inattentive 
symptoms to global efficiency in EO and EC, we limited our 
further investigation of the impact of age to models that 
tested if an interaction of age with global efficiency in the 
alpha band in EO or EC predicted inattentive symptoms. 

*
*

* *

0

0.05

0.1

0.15

0.2

0.25

0.3

10 15 20 25 30

va
lu

e

Network Cost (%)

Global Efficiency in EC and Inattentive 
Symptoms at Individual Network Costs

Figure 3. Global efficiency in eyes-closed and inattentive symptoms at individual network costs. 
Note. A plot of the relationship of global efficiency in alpha in EC and inattentive symptoms at each network cost. The x-axis has each 
network cost value, and the y-axis contains β values of the relationship of global efficiency and inattentive symptoms. An * indicates a 
significant (p < .05) association of global efficiency and inattentive symptoms. 
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< .05) association of global efficiency and inattentive symptoms. 
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Multiple regression analysis was used to test if age 
interacted with average global efficiency to predict inat-
tentive symptom severity. To test this, we used two 
models, both included age, SES, and PIQ as predictors 
of inattentive symptoms. One of these models addition-
ally included global efficiency in EO and the interaction 
of global efficiency in EO and age, the other addition-
ally included global efficiency in EC and the interaction 
of global efficiency and age. In these models, neither 
the interaction of age and global efficiency in EO, nor 
the interaction of age and global efficiency in EC sig-
nificantly predicted inattentive symptoms (EO global 
efficiency x age: β = −0.69, p = .28; EC global efficiency 
x age: β = −0.02, p = .98). 

Tests of Robustness 

Externalizing Symptoms 
Due to the high comorbidity of ADHD with opposi-
tional defiant disorder (ODD) and conduct disorder 
(CD) (S. S. Lee et al., 2008; Murphy & Barkley, 1996), 
we tested the robustness of the findings as a neural 
correlate that is specific to ADHD symptoms. To do 
so, additional regression models included symptoms of 
ODD and CD (measured on the DISC-IV) as covari-
ates. Importantly, these additional tests function as an 
initial step to test the specificity of the neural correlates 
identified in the current study. These additional models 
were tested with inattentive symptoms as an outcome 
since there was no relationship of global or local effi-
ciency with hyperactivity symptoms. The association 
between increased inattentive symptoms and increased 
global efficiency in EC remained significant when aver-
aging across network costs (β = 0.20, p = .03) and at all 
5 network costs (all p’s<0.05). These findings remained 
significant after FDR correction. The results in EO were 
more equivocal, the association between increased inat-
tentive symptoms and increased global efficiency in 
alpha in EO was significant at 1 out of 5 network 
costs (p < .05) but not when averaging across network 
costs (β = 0.16, p = .07). This finding did not remain 
significant after FDR correction. 

Internalizing Symptoms 
We also tested the robustness of the findings when 
internalizing symptoms (measured on the CBCL) were 
included in regression models as a covariate. Critically, 
these additional models provide further testing of the 
specificity of the neural correlates identified in the 
current study. These additional models were tested 
with inattentive symptoms as an outcome since there 
was no relationship of global or local efficiency with 
hyperactivity symptoms. The association between 

increased inattentive symptoms and increased global 
efficiency in alpha in EO was not significant when 
averaging across network costs (β = 0.16, p = .05), but 
remained significant at 2 out of 5 network costs 
(p’s = 0.03, 0.04). This finding did not remain signifi-
cant after FDR correction. However, the association 
between increased inattentive symptoms and increased 
global efficiency in EC remained significant when aver-
aging across network costs (β = 0.32, p = .002) and at 
all 5 network costs (all p’s < 0.01). 

Motion Confounds 
Given that a symptom of ADHD is hyperactivity, we 
sought to perform follow-up analyses to confirm that 
our results were unlikely to be caused by motion. As 
the main priority of the ICA analysis is to remove 
signal generated from motion (i.e., eye blinks, facial 
muscle movements) and retain neural signal, the num-
ber of components removed serves as a measure of the 
amount of motion artifact for each participant. Thus, to 
determine if the reported findings were related to 
motion, we compared the number of components 
removed during ICA between groups and in association 
with symptoms of ADHD. 

There was no difference in the number of compo-
nents removed between groups in the EO condition 
(TD group: M = 42.84, SD = 10.17; ADHD group: 
M = 42.71, SD = 9.85; t(127) = 0.07, p = .94) or the 
EC condition (TD group: M = 40.45, SD = 13.02; 
ADHD group: M = 37.46, SD = 10.53; t(125) = 1.36, 
p = .18). The total number of ADHD symptoms was 
not associated with the number of components 
removed in EO (r = 0.10, p = .35) or EC (r = −0.14, 
p = .17). Similarly, inattentive symptoms alone (EO: 
r = 0.28, p = .28; EC: r = −0.15, p = .16) and symptoms 
of hyperactivity and impulsivity alone (EO: r = 0.07, 
p = .53; EC: r = −0.12, p = .25) were not associated with 
the number of components removed during ICA ana-
lysis. The results of this analysis are consistent with the 
idea that motion artifact does not account for our 
observations. 

Discussion 

Here we demonstrate, using rsEEG and a graph theo-
retical framework, that in early childhood, increased 
ADHD symptoms are associated with increased global 
efficiency in the alpha band in eyes-open and eyes- 
closed resting-state EEG. Specifically, global network 
efficiency in alpha in EO and EC was associated with 
symptoms of inattention, but not hyperactivity, across 
all participants (although at two network costs prior to 
FDR correction there was a significant association of 
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global efficiency in EC with hyperactivity symptoms, 
this was not significant after FDR and findings at only 2 
network costs are often considered to be spurious). 
Activity in the alpha band has previously been asso-
ciated with inhibitory control and information proces-
sing (Klimesch, 2012), both of which are functions that 
are impaired in individuals with ADHD. These findings 
are consistent with prior work that has found that 
children ages 8–13 years with ADHD had excess 
alpha power compared to TD controls (Barry et al., 
2011). Additionally, across populations, the peak 
power is within the alpha band (Grandy et al., 2013), 
which thus might lend itself to supporting the identifi-
cation of subtle and nuanced differences in brain activ-
ity. Given the importance of identifying neural 
correlates of ADHD in early childhood, and the paucity 
of research in this age range, this work represents an 
important first step in understanding the neural under-
pinnings and markers of ADHD symptomatology in 
this critical developmental time period. 

Modularity 

We initially explored modularity, as previous findings 
provided evidence for increased modularity (increased 
neural network segregation) in older children and 
adults with ADHD when compared to controls 
(Henry & Cohen, 2019). However, in our sample of 
younger children, we observed no differences in mod-
ularity between groups, and no association of modular-
ity with symptoms of ADHD. While this differs from 
previous findings in older children and adults with 
ADHD, no study to date has examined modularity in 
individuals with ADHD in this age range, a dynamic 
period of brain development. It is possible that the 
neurodevelopmental trajectory of children with 
ADHD begins with typical levels of modularity early 
in childhood, but later on in development children with 
ADHD display increased modularity. This possibility is 
consistent with patterns of network development in TD 
populations where modularity increases from early 
childhood through adulthood (Chen & Deem, 2014). 

Global and Local Efficiency 

Our findings show that increased global efficiency was 
significantly associated with increased inattentive 
symptoms. Interestingly, there was no significant asso-
ciation of global efficiency or local efficiency with 
hyperactivity symptoms. Moreover, additional models 
tested the robustness of these findings and indicated 
that the relationship between symptoms of inattention 
and global efficiency in alpha is particular to ADHD as 

opposed to being indicative of broader psychopathol-
ogy, was not due to data loss in the ADHD group, or to 
increased movement for children with versus without 
ADHD. Increased global efficiency in atypical popula-
tions has been suggested to reflect overactive functional 
integration, such that it might be disruptive to informa-
tion transfer across the brain, hindering complex cog-
nitive functions (Ma et al., 2018; Zhang et al., 2015). In 
sum, previous literature has suggested that it is possible 
to have levels of global efficiency that are too elevated 
to be helpful, and are in fact harmful, for cognitive and 
behavioral functioning. 

This interpretation could be consistent with our 
observation that global efficiency was associated with 
disruption of inattentive symptoms specifically. 
Alternately, the specificity of associations between glo-
bal efficiency and inattentive symptoms could have to 
do with overall severity. Given the young age of our 
sample, and that inattentive symptoms are less notice-
able and more difficult to identify early in childhood, it 
may be that reports of increased inattentive symptoms 
in early childhood are indicative of increased overall 
severity of ADHD symptoms and impairment. 
Therefore, increased global efficiency might be 
a marker of increased severity of ADHD, rather than 
of inattention in particular. Future studies should 
further probe this question in this early age range. 

Previous studies reported that older children and 
adults with ADHD had decreased global efficiency, 
increased modularity, and increased local efficiency in 
comparison to TD controls of the same age (Beare et al., 
2017; Wang et al., 2009). The interpretation of these 
findings was that the symptoms of ADHD, and the asso-
ciated decreased levels of global efficiency, were related to 
a loss of long-range communication due to the presence 
of structural abnormalities in individuals with ADHD 
(Qiu et al., 2011; Wang et al., 2009). Increased local 
efficiency has been associated with ADHD diagnosis in 
older children, and has been interpreted as an indication 
of increased tolerance to network disruption, such that 
loss of a subset of nodes or connections within 
a subnetwork does not cause as much harm in 
a network with increased local efficiency (Latora & 
Marchiori, 2001; Wang et al., 2009). Taken with their 
finding of decreased global efficiency in children with 
ADHD, Wang et al. (2009) interpreted increased local 
efficiency in individuals with ADHD to be a response to 
the impairment caused by decreased global efficiency. 
Overall findings of increased segregation and decreased 
integration in previous research with older children, ado-
lescents, and adults with ADHD have been suggested to 
be evidence of a delayed maturational trajectory of neu-
rodevelopment in individuals with ADHD compared to 
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controls (Beare et al., 2017; Henry & Cohen, 2019; Lin 
et al., 2014); however, these interpretations have been 
developed without empirical data about neural network 
organization in individuals with ADHD in early 
childhood. 

Given the large quantity of neural and cognitive devel-
opment and maturation that occurs between early child-
hood and adolescence, the difference between previous 
findings and the results of the current study might be 
attributable to maturational changes; albeit following 
a pattern of development that is not only delayed as was 
thought based upon the previous literature, but different 
from typical neurodevelopment. Viewing the current work 
in conjunction with previous literature suggests that chil-
dren with ADHD follow a neurodevelopmental trajectory 
such that early in childhood the neural function of children 
with ADHD is characterized by increased global efficiency 
compared to TD controls, with the levels of global efficiency 
possibly spurring the development of increased local effi-
ciency, and then dropping to less than the level of global 
efficiency of TD controls later in development. It may be 
that an over-proliferation of long-range connections in 
early childhood actually drives subsequent heightened 
pruning of these connections in response. This matura-
tional pattern would be further reflected in only observing 
modularity differences in middle childhood and adoles-
cence, described above. Future longitudinal studies of the 
development of neural connections in children with 
ADHD throughout developmental stages are necessary to 
probe this possibility further. It should be noted that pre-
vious work with older children with ADHD where differ-
ences in both modularity and efficiency were observed has 
been primarily conducted with fMRI, and thus the differ-
ences in modalities is an additional confounding factor in 
understanding the differences in the present findings with 
younger children compared to those with older children. 

Additional analyses tested if the associations of global 
efficiency with inattentive symptoms were robust to con-
trols for internalizing symptoms and externalizing symp-
toms (ODD and CD symptoms). The association of global 
efficiency and inattentive symptoms remained significant 
in the EC condition. It is possible that we observe more 
robust associations between global efficiency and inatten-
tive symptoms for EC vs. EO because we were examining 
global efficiency in alpha and alpha power is a more 
prominent contributor to signal in EC (Kirschfeld, 
2005). This increase in overall alpha power may function 
to increase signal to noise ratio, allowing observed differ-
ences in connectivity to be more clear in EC compared to 
EO. The association of global efficiency in alpha measured 
during EC rsEEG with increased inattentive symptoms 
appears to be robust to internalizing symptoms and 
symptoms of ODD and CD, suggesting that global 

efficiency in alpha during EC rsEEG might be particularly 
helpful in further studies of early neural markers of 
ADHD symptoms. 

While we did not observe that any network measure 
predicted symptoms of hyperactivity, we observed, con-
sistent with existing literature (Bresnahan et al., 1999; 
Brown & Borden, 1986), that increased age predicted 
decreased hyperactivity symptoms. Further, while pre-
vious findings have shown a relationship between head 
movement and ADHD symptoms, and with hyperac-
tivity symptoms in particular (Couvy-Duchesne et al., 
2016), there was no difference in motion between 
groups in the current study according to our available 
metrics. The finding that the network metrics of inter-
est were unrelated to age and that there was no differ-
ence in movement between groups highlight the 
likelihood that our observations of network differences 
between groups and in association with symptoms of 
inattention are not due to motion confounds. 

Limitations 

There are several limitations to be considered in this study. 
First, due to the young age of the children, the amount of 
data collected was fairly short in comparison to other 
studies with older populations. Additionally, no metrics 
of cognitive function (working memory, task-switching, 
etc.) were measured in this study, thus we cannot relate 
our resting state network measures to indices of cognitive 
ability. Further, given that the network structure differ-
ences between children with and without ADHD were 
dissimilar to what has been observed in middle childhood 
and adolescence, future longitudinal studies are necessary 
to understand how this network structure changes from 
early childhood through adolescence. Finally, this work 
represents an initial step to identify neural correlates of 
ADHD in early childhood. In future research, these find-
ings could be explored in terms of their utility for improv-
ing diagnostic accuracy of ADHD in early childhood. As 
a future direction, the children in this study are being 
followed longitudinally to assess the potential of these net-
work organization differences to predict long-term diag-
nostic status. 

Conclusions 

Crucially, the present findings provide evidence for 
a neural correlate of ADHD symptom severity in early 
childhood. One neural network metric, global effi-
ciency, was related to symptoms of inattention in 
early childhood. Given the relatively low cost of EEG 
equipment in comparison to other neuroimaging mod-
alities, the relative ease of data collection with young 

12 S. FURLONG ET AL. 



children, and the potential for automated analyses, 
there is potential that network measures such as these 
could ultimately be used as complimentary metrics to 
aid existing diagnostic tools to improve diagnostic 
accuracy of ADHD. 

In contrast to previous theoretical interpretations 
(Wang et al., 2009), the present study provides evidence 
that in early childhood, ADHD is characterized by 
increased global efficiency. More longitudinal studies 
are needed to explore the shift that occurs in develop-
ment leading to older children with ADHD to present 
with decreased global efficiency and increased local 
efficiency. The differences between the present findings 
with younger children in comparison to studies of older 
children with ADHD suggest that the neural correlates 
of ADHD are not permanent during development, and 
thus highlight the potential of early intervention to 
shape these developmental trajectories. 
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