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Abstract
The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the
underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations
between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity
models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or
subnetwork for short. To overcome this current limitation, a hypergraph learning-based method is proposed to identify subnetwork
differences between two different cohorts. To achieve our goal, a hypergraph is constructed, where each vertex represents a subject and
also a hyperedge encodes a subnetwork with similar functional connectivity patterns between different subjects. Unlike previous
learning-basedmethods, our approach is designed to jointly optimize theweights for all hyperedges such that the learned representation
is in consensus with the distribution of phenotype data, i.e. clinical labels. In order to suppress the spurious subnetwork biomarkers, we
further enforce a sparsity constraint on the hyperedge weights, where a larger hyperedge weight indicates the subnetwork with the
capability of identifying the disorder condition.We apply our hypergraph learning-based method to identify subnetwork biomarkers in
Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). A comprehensive quantitative and quali-
tative analysis is performed, and the results show that our approach can correctly classify ASD and ADHD subjects from normal
controls with 87.65 and 65.08% accuracies, respectively.
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Introduction

Human brain can be partitioned into different regions accord-
ing to various functions (Van Den Heuvel and Pol 2010). An
integrated network is composed of different brain regions and

the information flows that are continuously processed be-
tween those functionally linked brain regions. In order to un-
derstand the pathological underpinnings of a neurological dis-
order, many functional neuroimaging studies have been de-
veloped to investigate abnormal alterations among brain con-
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nections. Recently, diagnosis of brain disease at individual
level with functional connectivity patterns has gained atten-
tion in computer-assisted diagnosis (Zeng et al. 2012).

It is well known that the complex and oscillatory activities
behind cognition are essentially the large-scale collaborative
work among millions of neurons through multiple brain re-
gions. However, the bivariate region-to-region interaction
(link-wise connectivity) is not sufficient to capture the charac-
teristics of functional connectivity involving three or more brain
regions that form a connectivity subnetwork, or subnetwork for
short. Recently, there is overwhelming evidence that brain net-
works display hierarchical modularity, making the investigation
of biomarkers beyond link-wise connectivity more attractive to
neuroscience and clinical practice than ever before.

In this paper, we propose a novel learning-based method to
discover the subnetwork biomarkers that are able to distinguish
two clinical cohorts and also diagnose brain disorders at indi-
vidual level.Without doubt, there are thousands of subnetworks
varying as the number and combination of involved brain re-
gions. Considering the computational cost, we only investigate
a 3-node subnetwork that is the simplest types of subnetwork.
Intuitively, two criteria are used to select a subnetwork:

1. Discriminative power across clinical groups. The entire
functional connectivity inside the subnetwork, instead of
the particular predominant connection link, shows signif-
icant difference between two clinical cohorts.

2. Consistency within each clinical group. The characteristic
of functional connectivity inside the subnetwork should be
similar for two subjects that fall in the same clinical group.

The naive solution is to calculate both the discriminative
power and consistency measurement for each subnetwork via
independent statistical t-test. Since the subnetworks are highly
correlated (e.g., existing a large amount of overlap of edges
among brain regions), independent statistical test can be hard-
ly effective in identifying the most influential subnetworks
that may be related to the brain disorder. In light of this, we
propose a novel learning-based method to jointly find a set of
subnetwork biomarkers where the combination of selected
biomarkers meets the above criteria with low redundancy.

To achieve this goal, we resort to hypergraph technique for
identifying the complex subject-to-subject relationships based
on the subnetwork connectivity inside all possible subnetwork
combinations. We treat each subject as a vertex in the
hypergraph. The star-expansion strategy is involved in con-
structing hyperedges. Specifically, for each subnetwork type,
a vertex chosen as the central node and its k-nearest neighbors
compose a hyperedge. Thus, the hypergraph eventually en-
codes a wide spectrum of subject-to-subject relationships in
the population. The next step is to identify the subnetworks
related to the brain disorder. Since each subject is assigned a
clinical label, it now becomes an optimization problem that

learns a set of weights (one for each hyperedge) to create
partitions in the hypergraph that maximally agrees with the
observed clinical labels. Hence, the learned weights reflect the
significance in distinguishing two clinical cohorts. Since we
construct hyperedges for all possible subnetworks in an ex-
haustive way, we further apply sparse constraint to suppress
spurious subnetworks.

Our proposed learning-based method is close to the net-
work motif study (Sporns and Kötter 2004; Milo et al.
2002), which seeks for a recurrent subnetwork that occurs
more often than in a pre-defined and randomly organized
benchmark network with the same degree distribution.
However, our work has the following advantages over the
network motifs.

1. Our proposedmethod is a learning-based approach, where
the objective function is aimed to estimate the influence of
each subnetwork in separating two clinical groups. On the
contrary, the current work on the motif highly relies on the
pre-defined benchmark network and only counts for the
occurrence of each motif, which cannot be used as bio-
marker for calssification.

2. Our method considers the dependency among subnet-
works. Thus, our method jointly selects a small number
of subnetwork biomarkers such that the combination of
these selected subnetwork biomarkers has the highest sen-
sitivity and lowest redundancy. To the best of our knowl-
edge, the current motif methods select each motif
independently.

3. Our method is fully data-driven and free of presumptions.
Specifically, we use the phenotype information (clinical
labels) to guide the selection of subnetworks such that it is
straightforward to interpret the biological meanings of
selected subnetworks. However, the current motif selec-
tionmethods have the issue of selectingmotifs that are not
consistent with real network since random rewiring in
constructing benchmark network removes topological in-
formation in real brain network (Sporns and Kötter 2004).

Our learning-based method is applied to discover subnet-
work biomarkers that can identify childhood autism spectrum
disorder (ASD) and attention deficit hyperactivity disorder
(ADHD) subjects, respectively. Promising classification re-
sults have been achieved, which demonstrate the power of
the learned subnetwork patterns.

The rest of this paper is organized as follows. We first
introduce the background of hypergraph learning in second
section. Then, we present our learning-based method to find
the significant subnetwork biomarkers in third section. After
that, we apply the method to the two public imaging databases
(ABIDE and ADHD-200), and present the comparison results
to validate the advantages of our method in forth section.
Finally, we conclude our method in fifth section.
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Related work

In recent years, hypergraph learning has been utilized in many
applications for its merit of exploring complex sample rela-
tionships. For example, Zhou et al. (Zhou et al. 2006) intro-
duced a general hypergraph learning framework for cluster-
ing, classification, and embedding. A hypergraph Laplacian is
proposed to completely present the complex relationships
among subjects. Hypergraph learning also has many success-
ful applications in computer vision and medical imaging area.
To name a few, Gao et al. have applied hypergraph learning
technique for 3-D object retrieval and recognition in (Gao et
al. 2012). Yu et al. (2012) proposed an adaptive hypergraph
learning method for transductive image classification by
adjusting the weights of hyperedges. Furthermore, Huang et
al. (Huang et al. 2010) proposed a transductive learning
framework for image retrieval. In their method, each image
is taken as a vertex in a weighted hypergraph and the task of
image retrieval is treated as a problem of hyperedge ranking.
In medical imaging area, hypergraph learning was used for
classifying gene express in (Tian et al. 2009) and identifying
MCI (mild cognitive impairment) and AD (Alzheimer’s dis-
ease) patients from normal controls using neuroimaging data
in (Gao et al. 2015a; b). Some studies (Davison et al. 2015; Jie
et al. 2016) give the connections between the neuroscience
and the hypergraph. For example, (Davison et al. 2015) finds
the groups of brain functional interactions that fluctuate co-
herently in strength over t ime instead of dyadic
(region-to-region) relationships. In (Jie et al. 2016), a
hyper-connectivity network of brain functions is constructed
by hypergraph technique. By extracting features from the
hyper-connectivity brain network, the better classifica-
tion performance can be achieved on MCI and ADHD
dataset. Other interesting applications of hypergraph can
be found in (Zass and Shashua 2008; Bu et al. 2010;
Sun et al. 2008; Yu et al. 2014; Huang et al. 2011;
Agarwal et al. 2005; Zhang et al. 2014).

In general, most works on hypergraph learning are built on
the hypergraph Laplacian proposed in (Zhou et al. 2006).
Similarly, our method considers each subject as a vertex in
the hypergraph and encodes complex subject-to-subject rela-
tionships via a set of hyperedges. Then, we leverage the opti-
mized hyperedge weights to reflect the importance of subnet-
work architectures. To be clear, we first briefly explain the
principle of hypergraph leaning in BIntroduction of
hypergraph learning^ section and then present our
learning-based method for identification of subnetwork bio-
markers in BOur method^ section.

Introduction of hypergraph learning

In the conventional graph technique, one edge only can con-
nect two related vertices at a time. Graph can be undirected or

directed which depends on whether the pairwise relationships
among vertices is symmetric (Zhou et al. 2006). Since graph is
an efficient tool to represent data distribution, it has been
widely used in manifold learning (Zhang et al. 2012) and
transductive learning (Chapelle et al. 2009). However, in
many real-world problems, relationships among the objects
are much more complex than pairwise. Simply projecting
the complex relationships into pairwise links will inevitably
lead to the loss of information which could be valuable in
many learning tasks (Zhou et al. 2006). On the contrary,
hypergraph is a generalization of traditional graph in which
each hyperedge can connect any number of vertices. It is
worth noting that a simple graph is just a special case of
hypergraph, where each edge allows linking only two vertices.
For convenience, Table 1 summarizes several important nota-
tions and their definitions for hypergraph.

A hypergraph G ¼ V; E;wð Þ is formed by a vertex set V, a
hyperedge set E, and a hyperedge weight w. Each hypergraph
eθ is assigned a weight w(θ) (θ ¼ 1;…; jEj ). The hypergraph
G can be represented by a Vj j � jEj incidence matrix H with
the elements defined by

H v; θð Þ ¼ 1; if v∈eθ
0; if v∉eθ:

�
For a vertex v∈V, its degree is defined based on H by

d vð Þ ¼ ∑jEj
θ¼1w θð ÞH v; θð Þ:

Similarly, the edge degree of hyperedge e∈E is

δ θð Þ ¼ ∑
v∈V

H v; θð Þ

Dv and De denote the diagonal matrices of the vertex de-
grees and the hyperedge degrees, respectively. Let Dw denote
the jEj � jEj diagonal matrix of the hyperedge weights.

Hypergraph learning has been applied to various applica-
tions such as image classification, clustering, and embedding.
Here, we use the binary classification problem as an example
to explain the principle of hypergraph learning. Suppose y(v)
returns the label of a given vertex v, where y(v) = + 1 and y(v)
= − 1 denote the positive and negative training subjects, re-
spectively. Since the labels on the testing data are not known
yet, we usually set the values of their respective label as 0. On
the other hand, f is a classification function, which returns a
label confidence f(v) (−1 ≤ f(v) ≤ 1) on each vertex v∈V, where
the underlying vertex v is assigned to positive sample if 0 <
f(v) ≤ 1. Otherwise, vertex v is considered as negative subject.

After we stack f(v) and y(v) into the column vectors f
*
and y

*
,

the objective function can be defined as:

argmin
f
*

Ω f þ λRemp f
*� �

: ð1Þ
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where Ωf is a regularizer on the constructed hypergraph (the
hypergraph construction approach will be detailed in BMethod

overview^ section), and Remp f
*� �

¼ y
* − f

*
��� ��� 2

2 is an empir-

ical loss. λ > 0 is a weighting parameter used to balance the
two terms in Eq. (1). Specifically, the hypergraph regulariza-
tion term Ωf is defined as:

Ω f ¼ 1

2
∑ Ej j

θ¼1∑u;v∈V
w θð ÞH u; θð ÞH v; θð Þ

δ θð Þ
f uð Þffiffiffiffiffiffiffiffiffi
d uð Þp −

f vð Þffiffiffiffiffiffiffiffiffi
d vð Þp !2

: ð2Þ

The intuition behind Eq. (2) is to encourage the normalized
label probabilities of any two vertices u and v to be similar as
long as they fall into the same hyperedge. By letting

Λ ¼ D
−12
v HDwD−1

e HTD
−12
v , and ℒ=I −Λ, the normalized reg-

ularization term can be rewritten as:

Ω f ¼ f
*T

ℒ f
*

: ð3Þ
where ℒ is a positive semidefinite matrix, called
hypergraph Laplacian. The objective function in Eq.
(1) has a closed-form solution:

^
f
*

^ ¼ Iþ 1

λ
ℒ

� �−1

y
*

: ð4Þ

It is worth noting that the hypergraph regularization term
Ωf is the function of hyperedge weights {w(θ)}, although we
assume that the hyperedge weights are identical in the above
example. As we will explain in BEncoding complex
subject-wise relationship in hypergraph^ section, each
hyperedge is associated with one particular subnetwork.
Thus, it is reasonable to optimize both the label probability

f
*
and hyperedge weights {w(θ)} in the objective function of

the standard hypergraph learning. Hence, the optimized
hyperedge weights {w(θ)} respect not only the distribution

of phenotype data y
*
, but also the local embedding of func-

tional behaviors encoded in the hypergraph G.

Our method

Method overview

Figure 1 illustrates the intuition behind our proposed
learning-based method. For clarity, we assume three subjects
in one cohort (top-left in Fig. 1) and two subjects in another
cohort (bottom-left in Fig. 1). Only two possible subnetwork
patterns (purple and red triangles) are under investigation in
this example. So, the goal is to find out which subnetwork is
able to separate subjects from two cohorts more accurately than
others, based on the functional connectivity flow inside the
subnetwork pattern. Eventually, the selected subnetworks are
considered as biomarkers to identify other individual subjects.

Hypergraph is employed to measure the complex
subject-wise relationships based on the functional connectiv-
ity flow running inside each subnetwork pattern. Specifically,
subjects are considered as vertices (vi, i = 1, 2,…, 5 in Fig. 1)
in the hypergraph. In general, a set of subjects fall into the
same hyperedge only if the difference of the overall functional
connectivity inside the same subnetwork is small. Thus,
hyperedge can accommodate the complex relationship be-
yond two subjects. For example, subject v2 and v3 stay in the
same hyperedge e1 with v1 since their functional connectivity
flows (designated by the black arrows) are very similar inside

Table 1 Notations and definitions

Notation Definition

G ¼ ðV; E;w ) G denotes a hypergraph, and V and E indicate the vertex set and hyperedge set, respectively; and w represents the weights of the
hyperedges.

V The set of vertices of the hypergraph G, containing N elements.

E The set of edges of the hypergraph G, which contains Θ items.

N The number of subjects in the data, i.e., jVj.
Θ The number of hyperedges in the hypergraph, i.e., jEj.
H The incidence matrix of the hypergraph.

d(v) The degree of the vertex v.

δ(e) The degree of the hyperedge e.

Dv The diagonal matrix of the vertex degrees.

De The diagonal matrix of the edge degrees.

Dw The diagonal matrix of the hyperedge weights, with its (θ, θ)-th entry as w(θ).

y
*¼ y1;…; yN½ �T The N × 1 label vector for hypergraph learning.

f
*¼ f 1;…; f N½ �T The N × 1 to-be-learned label.

L The Laplacian matrix of the hypergraph.
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the purple subnetwork. The standard way to construct
hyperedges is to exhaustively visit each subject per each sub-
network. As shown in Fig. 1, we can obtain four hyperedges
(e1-e4) as indicated by curves. Note that the identical
hyperedges are discarded and the color on each hyperedge
indicates the associated subnetwork.

It is obvious that the hypergraph has comprehensively
encoded a wide spectrum of subject-wise relationships for var-
ious subnetworks. A hypergraph learning technique is used to
jointly quantify the significance of each subnetwork based on
the ground-truth clinical label on each subject. Intuitively, the
more label discrepancies occur within the hyperedges related to
the underlying subnetwork pattern, the lower the significance
of that particular subnetwork becomes. Finally, the subnetwork
patterns with high overall significance value across related
hyperedges are regarded as the biomarkers from rs-fMRI im-
age. As shown in the left panel of Fig. 1, the labels of vertices in
e1 and e2 (purple curves) are highly consistent, suggesting that
the functional connectivity flow running on the purple subnet-
work pattern is a good biomarker to separate subjects from two
different cohorts. In contrast, the functional connectivity flow
inside the red subnetwork pattern fails to be the biomarker since
the hyperedges built on the red subnetwork pattern have sub-
jects with different clinical labels, e.g., v1 and v4 belonging to
different categories are both included in the hyperedge e3.

Encoding complex subject-wise relationship
in hypergraph

Given a training set of N subjects, where each subject has
already been partitioned to R anatomical regions.Without loss
of generality, we use ‘+1’ and ‘-1’ to distinguish the label for
two clinical cohorts, and thus form a column vector

y
*¼ y1; y2;…; yN½ �T . Considering the computational cost and

efficiency, we first construct the pool of all possible subnet-
works Δ = {Δj| j = 1,…,C}, where each subnetwork pattern Δj
consists of three brain regions randomly picked up from the
total R regions. Therefore, there are C ¼ R

3

	 

subnetworks in

total. Given a subject vn and a particular subnetwork Δj, we
can obtain a three-element vector of functional connectivity

flow α j;n ¼ α1
j;n;α

2
j;n;α

3
j;n

h i
, where each element in αj, n is

the Pearson’s correlation coefficient of the mean rs-fMRI sig-
nals, from subject vn, between any two brain regions within
the subnetwork Δj.

Next, we construct hypergraph, as denoted by G ¼ V; Eð Þ,
where the hypergraph vertex set V ¼ vnjn ¼ 1;…;Nf g in-
cludes all subjects in the population with the known clinical
labels. We use star-expansion strategy to build a set of
hyperedges by exhaustively visiting each vertex vn for each
particular subnetwork Δj, thus forming the hyperedge set
E ¼ e j;nj j ¼ 1;…;C; n ¼ 1;…;N

� �
. Specifically, a subject

vn is treated as a centroid vertex. For subnetwork Δj, we ex-
amine the distance between functional connectivity flow αj, n

at current vertex vn and α j;n0 (n′ = 1, …, N, n′ ≠ n) at all

other vertices. Ifα j;n0 is within the k-nearest neighborhood of the
centroid vertex, the subject vn0 is included in the hyperedge ej, n
(i.e., vn0∈e j;n ). Thus, each hyperedge consists of (k + 1) vertices.

Since each hyperedge ej, n is related with both vertex vn and
subnetwork Δj, we use the index θ to delegate the bivariate
index (j, n), i.e., θ↔ (j, n), where θ ranges from 1 to Θ =C ×
N. Thus, H is a N ×Θ matrix. For each entry H(n, θ), we set
H(n, θ) = 1, if the vertex vn is contained in hyperedge e(j, n).
Otherwise,H(n, θ) = 0. The example of the incidence matrix is
shown in the right panel of Fig. 1. Apparently, the incidence
matrix conveys more information than the affinity matrix used
in the conventional approaches based on simple graphs.
Furthermore, we construct a C × N matrix W where each

Fig. 1 The overview of our learning-based method in discovering complex subject relation patterns by hypergraph
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elementwj, n denotes the weight of hyperedge ej, n. The weight
of the j-th subnetwork is defined as ∑N

n¼1wj;n Since each col-
umn of incidence matrix H encodes the connected vertices
inside a particular hyperedge, each wj, n has one-to-one corre-
spondence to the θ-th column vector in H.

Discovering subnetwork biomarkers by sparse
hypergraph learning

Our learning-based method aims to find out the subnetwork
by inspecting the performance of each hyperedge in separat-
ing subjects from two cohorts. To this end, we first assume
that the label on each subject is not known yet. Thus, we use
hypergraph learning technique to estimate the likelihood fn for
each subject vn, which is driven by (a) the minimization of

discrepancies between the ground-truth label vector y
*
and the

estimated likelihood vector f
* ¼ f 1; f 2;…; f N½ �T , and (b) the

consistency of clinical labels within each hyperedge. Similar
to Eq. (2), the consistency requirement can be defined as:

Ω f Wð Þ ¼ 1

2
∑C

j¼1∑
N
n¼1∑

N
n0¼1

wj;nH n; θð ÞH n
0
; θ

	 

δ θð Þ

f nffiffiffiffiffiffiffiffiffi
d nð Þp −

f n0ffiffiffiffiffiffiffiffiffiffi
d n0ð Þp !2

:

ð5Þ

The regulation term Ωf(W) penalizes the label discrepancy
by encouraging the difference between the normalized likeli-

hoods f n=
ffiffiffiffiffiffiffiffiffi
d nð Þp

and f n0=
ffiffiffiffiffiffiffiffiffiffi
d n0ð Þp

to be as small as possible if
vn and vn0 are in the same hyperedge eθ. It is clear that the

regularization term Ωf(W) is a function of both W and f
*
,

which eventually makes the optimization of W reflecting the
quality of each hyperedge as a biomarker.

Of note, we construct N hyperedges in total for each pos-
sible subnetwork, where each subject in turn acts as a central
vertex. In order to make more sense on the selected

subnetwork biomarkers, we go one step further to enforce
sparsity on the subnetwork, i.e., most rows in W are null
vectors (with all elements in the row vector as zeroes). We
encourage the selected subnetwork working consistently
across subjects, in order to suppress the predominant weights
on a few subjects misleading the learning of subnetwork bio-
markers. It is obvious that the integration of the above two
criteria falls into the typical ℓ2, 1 regularization (Argyriou et al.
2008). Thus, we further derive our objective function of learn-
ing subnetwork biomarkers as:

argmin
W; f

*
Ω f Wð Þ þ λ y

* − f
*

��� ���2
2
þ μ∑C

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1w
2
j;n

q
: ð6Þ

where λ and μ are two positive scalars controlling the strength
of data fitting term and the ℓ2, 1-norm on the weighting matrix

W, respectively. Term y
* − f

*
��� ��� 2

2 guarantees that the new

generated results f
*
are not far away from the ground-truth label

information. We use Fig. 2 to demonstrate the effectiveness of
ℓ2, 1-norm. Figure 2 visualizes the matrix W, in which the
elements with deep blue colors have large values. The ℓ2,
1-norm accentuates the individual weight learning across mul-
tiple types of hyperedge. Through the joint sparsity-inducing
norm, many weights of the hyperedges constructed via impor-
tant subnetworks will learn large values and a small number of
weights are in the hyperedges based on irrelevant subnetworks.

Optimization

Since the objective function in Eq. (6) is convex only with

respect to (w.r.t.) variables W and f
*

separately, we propose

the following solution to optimize W and f
*
, alternatively.

First, we fix W and optimize f
*
, and then the objective

function becomes:

Fig. 2 Illustration of the
hyperedge weight matrixW
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argmin f
⇀ϕ f

*
 !

¼ f
*T

ℒ f
*

þλ y
*

− f
*

�����
�����
2

2

: ð7Þ

The conventional hypergraph inference method can be

used to estimate f
*
by letting ∂ϕ

∂ f ¼ 0, which leads to the deter-

ministic solution:
^
f
* ¼ Iþ 1

λ L
	 
−1

y
*
.

After obtaining f
*
, we can optimizeW with f

*
fixed. After

discarding the unrelated terms w.r.t. W in Eq. (6), we derive
the objective function for hypergraph weight as:

argmin
W

φ Wð Þ ¼ f
*T

L f
* þμ∑C

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1w
2
j;n

q
: ð8Þ

Taking the derivative of the objective w.r.t. wj, n and also
setting it to zero, we obtain:

−δ θð Þ−1Γ2
θ þ μbjwj;n ¼ 0: ð9Þ

where Γθ denotes the θ-th column of the Θ ×Θ matrix Γ

¼ HTD
−1
2

v f and bj ¼ ∑ jw
2
j;n

� �−1
2
. Thus, we have:

wj;n ¼ δ θð Þ−1Γ2
θ

μbj
: ð10Þ

Note that bj is a latent variable which depends on the esti-
mation of other entries in W. Thus, our solution turns to an
iterative manner, as summarized in Algorithm 1.

Features for classification

A specific subnetwork Δjwith discriminative ability is
chosen after hypergraph learning. Then given a subject
vn, we can obtain a three-element vector of functional

connectivity flow α j;n ¼ α1
j;n;α

2
j;n;α

3
j;n

h i
, where each el-

ement in αj, n is the Pearson’s correlation coefficient of
the mean rs-fMRI signals, from subject vn, between any
two brain regions within the subnetwork Δj. In this
work, traditional Support Vector Machine (SVM)
(Cortes and Vapnik 1995) and the Support Tensor
Machine (STM) (Tao et al. 2005) are adopted for clas-
sification. Suppose we have m subnetworks. For classi-
fication with SVM, the functional connectivity flows are
concatenated as a long feature vector αn = [α1, n,α2, n,
…,αm, n] for subject vn and the total number of the
elements in αn is 3 ×m. For classification with STM
the functional connectivity flows are stacked as a fea-
ture matrix αn = [α1, n;α2, n;…;αm, n] ∈ R3 ×m for sub-
ject vn. Finally, for all subjects these feature vectors and
feature matrices are combined as a feature matrix and a
feature tensor for SVM and STM, respectively.

Algorithm 1 An iterative algorithm to solve the optimization problem in Eq. (6)

Input: Vertex set = { | = 1,… , }, subnetwork Δ = Δ | = 1, … , and ground-truth clinical 

label = [ ,… , ] .

1. Construct hypergraph via the star-expansion strategy. Initialize and obtain , , ,

and .

While not converge do

2. Calculate ( ) = + ( ) .

3. Calculate ,

( )
=

( ) based on the latest estimation ( ), and update with ( ).

4. = + 1.

End while

Output: and .
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Experiments

Validation of the simulated dataset

In this simulated dataset, we suppose having two groups of
subjects (50 patients and 50 normal controls). We simulate
three types of hyperedges: (1) good-quality hyperedges
consisting of 6 subjects randomly selected from the same
group (hyperedge index from 1 to 100); (2) median-quality
hyperedges consisting of 5 subjects randomly selected from
the same group and 1 subject from another group (hyperedge
index from 101 to 200), and (3) low-quality hyperedges
consisting of 3 subjects randomly selected from one group
and the remaining 3 subjects randomly selected from another
group (hyperedge index from 201 to 300). In the left of Fig. 3,
we show the incidence matrix H. Each column denotes one
hyperedge, and the colors indicate the type of simulated
hyperedges. Red, blue, and green colors represent
good-quality hyperedges, median-quality hyperedges, and

low-quality hyperedges, respectively. Symbols ‘+’ and ‘o’ in-
dicate the vertexes belonging to two categories. The optimized
weights obtained by our sparse hypergraph learning approach
are shown in the right of Fig. 3. It is clear that the values of
optimized hyperedge weights are reasonable to reflect the
quality of hyperedges. The hyperedges contain more subjects
from the same class, then have the higher hyperedge weights.
After this validation, we apply our learning-based approach to
identify subnetwork biomarkers in ASD and ADHD studies,
respectively, as detailed below.

Discovering subnetwork biomarkers for autism
Spectrum disorder

Critical subnetworks learned by hypergraph inference

In this section, we apply our learning-basedmethod to identify
the most influential subnetworks based on 45 ASD and 47
normal control (NC) subjects from the NYU site of Autism

Fig. 4 The top 10 selected subnetworks (white triangle cliques), where the functional connectivity flow running inside has significant difference between
ASD and NC cohorts
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Fig. 3 A toy example
demonstrating the principle of our
hypergraph learning where the
learned hyperedge weights reflect
the quality of each subnetwork
pattern being as the biomarker
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Brain Imaging Data Exchange (ABIDE) database (Di Martino
et al. 2014). The first 10 obtained rs-fMRI images of each
subject are removed to ensure magnetization equilibrium.
After slice timing and head motion correction, all images are
normalized into MNI space and then segmented into 116
regions-of-interest (ROIs) according to Automated
Anatomical Labeling (AAL) template (Tzourio-Mazoyer et
al. 2002). Following this, the images undergo signal
detrending and bandpass filtering (0.01–0.08HZ). For each
subject, the mean time series of each ROI is obtained by av-
eraging the resting state fMRI time series over all voxels in
that particular ROI. Note, the total number of possible subnet-
works is 116

3

	 
 ¼ 253,460. We jointly find the best parameters
for λ and μ in Eq. (6) using the line grid search strategy with
the parameter values selected from the range of [10−3, 10−2,
10−1, 1,10,102, 103] via 10-fold cross validation. Specifically,
we randomly split the data into 10 subgroups. At each time, 9
subgroups are treated as training data and the left-out one is
used the testing data. For selecting the parameter values, an-
other 10-fold cross validation inside the training data is also
conducted. The training data is separated into 10 parts, one
part is called validation set, and the other parts are used for
training the classification model. This procedure is repeated
10 times to avoid introducing the bias.

Since we randomly run the experiment 10 times to get the
average results, and, for each time, the obtained top 10 sub-
networks are not always the same for different parameter
values. Thus, we present the top 10 most frequently appearing
subnetworks. We rank these subnetworks according to their

weights and Fig. 4 shows the top 10 most critical subnetworks
(white triangle cliques) out of 253,460 candidates between
ASD and NC cohorts. The color on each vertex differentiates
the functions in human brain. It is clear that (a) most of the
brain regions involved in the selected top 10 critical subnet-
works locate at the key areas related with ASD, such as amyg-
dala, middle temporal gyrus, superior frontal gyrus; and (b)
most of the selected subnetworks travel across subcortical and
cortical regions, which is in consensus with the recent discov-
ery of autism pathology in neuroscience community
(Minshew and Williams 2007).

Identification of ASD subjects with the learned subnetwork

In the following experiments, we use functional connectivity
flows on the selected critical subnetwork patterns as feature
representation (where each feature vector of subnetwork pat-
tern is a 3-dimensional vector) to classify ASD and NC sub-
jects. Then, the traditional Support Vector Machine (SVM)
(Cortes and Vapnik 1995) is adopted to train the classifier
directly based on the concatenated feature vector, denoted as
Subnetwork-SVM. Since the functional connectivity flow
comes from each subnetwork pattern, it is straightforward to
organize them to a tensor representation and then use the ad-
vanced Support Tensor Machine (STM) (Tao et al. 2005) to
take advantage of the structured feature representation, denot-
ed as Subnetwork-STM in the following experiments. Details
of SVM and STM are provided in Appendix. In order to dem-
onstrate the advantage of subnetwork over the conventional

Table 2 Classification performance on ASD dataset of NYU. The best results are denoted in bold

Method ACC SEN SPE PPV NPV AUC

Link-SVM 0.7568 ± 0.1323 0.6956 ± 0.0021 0.8170 ± 0.0016 0.7845 ± 0.0016 0.7370 ± 0.0013 0.8193 ± 0.1472

Toplink-SVM 0.7709 ± 0.1339 0.7156 ± 0.0022 0.8255 ± 0.0016 0.7970 ± 0.0016 0.7519 ± 0.0014 0.8422 ± 0.1327

Subnetwork-SVM 0.8446 ± 0.1179 0.8178 ± 0.0017 0.8702 ± 0.0015 0.8678 ± 0.0015 0.8330 ± 0.0013 0.9315 ± 0.0972

Subnetwork-STM 0.8765 ± 0.1059 0.8778 ± 0.0015 0.8766 ± 0.0015 0.8720 ± 0.0014 0.8822 ± 0.0012 0.9390 ± 0.0886

a b

Fig. 5 Classification performance
of four different classification
methods on ASD dataset of NYU
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region-to-region connection in brain network, we compare
with two counterpart methods Link-SVM (using the
Pearson’s correlations on each link as the feature) and
Toplink-SVM (selecting significant links by t-test (p = 0.05)
and using the Pearson’s correlation on the selected links to
form the feature vector).

Evaluation on discrimination power In this experiment, we
use 10-fold cross validation strategy to evaluate the classifica-
tion accuracy (ACC), sensitivity (SEN), specificity (SPE),
positive predictive value (PPV), and negative predictive value
(NPV) on 45 ASD and 47 NC subjects from NYU site in
ABIDE database. As shown by both the classification perfor-
mance plots and the ROC curves in Fig. 5, the classifiers
trained on connectome features from our learned subnetworks
have achieved much higher classification performance than
those trained by the same classification tools but based on
the connectome fea tures f rom the convent ional
region-to-region connection links. Also, the substantial classi-
f icat ion improvements by Subnetwork-STM over
Subnetwork-SVM indicate the benefit of using structured data
presentation in classification, where such complex relation
information is clearly delivered in the learned subnetworks.

Table 2 shows the classification performance on ASD
dataset of NYU. The conventional method, such as
Link-SVM, obtains only an accuracy of 0.7568, while

our proposed methods achieve accuracies of 0.8446 and
0.8765 with SVM and STM, respectively. At the same
time, other classification performance metrics also dem-
onstrate the superiority of our proposed method. That
means, the subnetwork patterns (features) selected by
our method contain more discriminative information,
which validates that the identified subnetworks are the
more suitable ASD biomarkers.

The f
*

learned in the objective function (6) gives the pre-
dicted label of testing subjects which can be directly used to
evaluate the classification power of hypergraph learning.
Table 3 presents the classification performance of hypergraph
learning method.

As we can see from Table 3, the Hypergraph method
achieves an accuracy of 0.7646, which is superior to the ac-
curacy obtained by link-SVM, but inferior to the accuracy got
by Toplink-SVM. That is probably because the Hypergraph
method can adequately utilize the importance of hyperedges.
During the learning process, the hyperedges consisting of sub-
networks with less discriminability will get small weights,
which can enhance the performance of the classification.
While the classification performance of Hypergraph method
is inferior to that of Toplink-SVM, this is probably because the
Toplink-SVM not only selects useful features, but also finds
the optimal hyperplane to separate the two categories subjects.
The similar phenomenon can be observed from other

Fig. 6 The top 10 selected subnetworks (white triangle cliques), where the functional connectivity flow running inside has significant difference between
ADHD and NC cohorts

Table 3 Classification results of Hypergraph learning on ASD dataset of NYU

ACC SEN SPE PPV NPV AUC

Hypergraph 0.7646 ± 0.1339 0.7067 ± 0.0016 0.8213 ± 0.0016 0.7910 ± 0.0016 0.7452 ± 0.0014 0.8299 ± 0.1423
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measures such as sensitivity and specificity. In order to
consider the false positives found in hypergraph learning,
false positive rate (FPR) is listed in this experiment. The
false positive rate obtained by the Hypergraph method is
FPR = 1−SPE = 0.1787.

Evaluation on generality To verify the generality of learned
subnetworks, we also directly apply the subnetworks learned
on ASD dataset of NYU to the classification of 44 ASD and
53 TC subjects from the UM (University of Michigan) site in
ABIDE database. The accuracies obtained by Link-SVM and
Toplink-SVM are 0.6086 and 0.6253, respectively, which are
comparable to those in (Nielsen et al. 2013). Our
Subnetwork-SVM and Subnetwork-STM can improve the
accuracies up to 0.6668 and 0.6968, respectively. Again,
the classification methods using the features extracted
from the learned top subnetworks achieve much higher
classification accuracies than the counterpart Link-SVM
and Toplink-SVM methods.

Discovering subnetwork biomarkers for attention
deficit hyperactivity disorder (ADHD)

Here, we deploy our proposed method to identify subnetwork
biomarkers of attention deficit hyperactivity disorder
(ADHD). As we know, ADHD is one of the most common
diseases in school-aged children. The data used here are from
the New York University Child Study Center (NYU), as a part
of the eight databases of ADHD-200Global Competition. The

ADHD dataset of NYU consists of 216 subjects, including
118 ADHD with the ages ranging from 7.24 to 17.61 (mean
age 11.26) and 98 healthy controls with the ages ranging from
7.17 to 17.96 (mean age 12.17). For processing, the resting
state fMRI data are first performed with a series of preprocess-
ing steps, including removal of a central spike caused by MR
signal offset, slice timing, realign, image registration, normal-
ization and spatial smoothing (Matthews and Jezzard
2004). AAL template is also applied to measure the
functional connectivity among brain regions. Note that
the parameter setting for the ADHD experiments is the
same as for the ASD experiments.

Similar to the experiments on ASD data, we also present
the top 10 subnetwork biomarkers learned by our proposed
method in ADHD in Fig. 6. The current models of ADHD
emphasize the dysfunction of frontal, parietal, and cerebellar
brain regions in ADHD, as well as disrupted connectivity
between these regions in Fig. 6, we can see that these regions
predominate in the subnetworks that differentiate children
with ADHD from typically developing children. These results
demonstrate that our novel method identifies subnetworks that
may be meaningful biomarkers for separating children with
ADHD from typically developing controls.

To validate the selected subnetwork biomarkers, we also
treat the subnetworks as features and then use SVM and STM
classifiers for classification. Figure 7 presents the classifica-
tion performances of different methods on ADHD data.
Table 4 gives the details of the classification results. As we
can see from Table 4, the classifiers (SVM and STM) using

Table 4 Classification performance on ADHD dataset. The best results are denoted in bold

Method ACC SEN SPE PPV NPV AUC

Link-SVM 0.5306 ± 0.1066 0.5864 ± 0.0016 0.4633 ± 0.0013 0.5681 ± 0.0010 0.4820 ± 0.0013 0.5283 ± 0.1206

Toplink-SVM 0.5772 ± 0.1024 0.6229 ± 0.0015 0.5224 ± 0.0014 0.6110 ± 0.0009 0.5350 ± 0.0013 0.6000 ± 0.1166

Subnetwork-SVM 0.6453 ± 0.0937 0.6890 ± 0.0014 0.5929 ± 0.0013 0.6708 ± 0.0009 0.6129 ± 0.0012 0.6955 ± 0.1043

Subnetwork-STM 0.6508 ± 0.0967 0.6907 ± 0.0014 0.6031 ± 0.0014 0.6769 ± 0.0009 0.6182 ± 0.0012 0.7024 ± 0.1044

a b

Fig. 7 Classification
performances of four different
classification methods on ADHD
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the features selected by our proposed method achieve better
accuracies than those of other traditional methods. More spe-
cifically, the best accuracy is 0.6508 obtained by
subnetwork-STM, while the accuracy of the conventional
method using all the features is just 0.5306, much lower than
those of our methods. It is worth nothing that the classi-
fication results on NYU dataset are the worst among
ADHD-200 datasets at this point, and the best accuracy
of 0.6508 achieved by our method is better than the
average best imaging-based diagnostic performance of
0.6154 achieved in the ADHD-200 global competition.

Table 5 presents the classification performance of
hypergraph learning method. Similar to the results given by
Table 3, the Hypergraph method achieves higher classification
accuracy than Link-SVM, but lowers than Toplink-SVM. The
last column of Table 5 also reports the false positive rate
achieved by Hypergraph method FPR =1−SPE = 0.4949.

Conclusion

In this paper, we propose a novel learning method to discover
complex connectivity biomarkers that are beyond the
widely-used region-to-region connections in the conventional
brain network analysis. Specifically, a hypergraph learning
technique is introduced to encode the complex subject-wise
relationships in terms of various subnetworks, and then quan-
tify the significance of each subnetwork based on the discrim-
ination power across clinical groups as well as consistency
within each group. We apply our learning-based method to
finding the subnetwork biomarkers for ASD and ADHD, re-
spectively. The learned top subnetworks are not only in con-
sensus with the recent clinical findings, but also able to signif-
icantly improve accuracy in identifying ASD (or ADHD) sub-
jects from normal controls, strongly supporting their potential
use and impact in neuroscience study and clinic practice.

One limitation of our proposed method is the increasing
computational capacity for subnetworks with more than 3
nodes. Considering the 3-node subnetworks in brain with
116 regions-of-interest, the total number of possible subnet-
works is 116

3

	 
 ¼ 253,460. If increasing 3-node to 4-node sub-

networks, the number of the whole subnetworks is 116
4

	 
 ¼
7,160,245. For the huge 4-node subnetworks, it is impossible
to conduct the experiment with the limited memory and CPU
resources. In our future work, pre-selection of 116 ROIs will
be performed, which will remove some brain regions

unrelated to the brain diseases. We hope it can release the
demand on computer memory and raise the efficiency.
Another limitation is the interpretation of the findings of our
method. Most of the brain regions involved in the selected
subnetworks locate at the key areas, which are in consensus
with some discovery in neuroscience, however the functions
of these critical subnetworks still need to be studied. In our
following work, we expect to collaborate with neuroscientists
to investigate the foundations of these subnetworks in neuro-
science for better understanding the brain diseases.
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Appendix

Support Vector Machine:

Given a data set D ¼ xi; yif gni¼1 of labeled samples, where
yi ∈ {−1, +1}. SVM wants to find the optimal hyperplane
which can separate the data and minimize the generalization
error at the same time. The optimization problem of SVM can
be defined as follows:

minw;b;ξ
1

2
wTwþ C∑

n

i
ξi

s:t:yi w
Txi þ b

	 

≥1−ξi

ξi≥0; i ¼ 1; 2;…; n

ð11Þ

where w is a vector orthogonal to the hyperplane. Equation
(11) is a constrained optimization problem and can be solved
by using quadratic programming tsechniques.

When a new testing data point coming, a label is assigned
to the new sample via the following decision function:

g xð Þ ¼ sign wTxþ b
	 
 ð12Þ

Support Tensor Machine.
Given a set of training samples {Xi, yi}, i = 1, 2, …, n,

where Xi is the data point in order-2 tensor space, X i∈ℝd1⨂

Table 5 Classification results of Hypergraph learning on ADHD dataset

ACC SEN SPE PPV NPV AUC

Hypergraph 0.5629 ± 0.1066 0.6110 ± 0.0015 0.5051 ± 0.0014 0.5978 ± 0.0010 0.5189 ± 0.0013 0.5794 ± 0.1191
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ℝd2 and yi ∈ {−1, +1} is the label of Xi. The goal of STM is to
find a tensor classifier f(X) = uTXp + b such that the two clas-
ses can be separated with maximum margin. Thus, the opti-
mization problem of STM is as follows:

minu;p;b;ξ
1

2
upT
�� ��2 þ c∑

n

i
ξi

s:t:yi u
TX ipþ b

	 

≥1−ξi

ξi≥0; i ¼ 1; 2;…; n

ð13Þ

As we can see from Eq. (13), STM is a tensor generation of
SVM. The algorithm to solve STM is stated below:

1. Initialization: Let u = (1,…, 1)T.
2. Calculating p: Let xi ¼ XT

i u and β1 = ‖u‖2, p can be com-
puted by solving the following problem:

minp;b;ξ
1

2
β1p

Tpþc∑
n

i
ξi

s:t:yi p
Txi þ b

	 

≥1−ξi

ξi≥0; 1 ¼ 1; 2;…; n

ð14Þ

It is worth noting that problem (14) is the same as objective
function (11) of SVM. Thus, the standard optimization ap-
proach for SVM can be adopted for Eq. (14).

3. Calculating u:When p is solved, let exi ¼ X ip and β2
= ‖p‖2. u can be computed by solving the following
problem:

minu;b;ξ
1

2
β2u

Tuþ c∑
n

i
ξi

s:t:yi u
Txi þ b

	 

≥1−ξi

ξi≥0; 1 ¼ 1; 2;…; n

ð15Þ

As above, the standard optimization method for SVM can
also be used to solve Eq. (15).

4. Iteratively computing u and p: u and p can be iteratively
calculated by step 2 and 3 until a convergence attained.
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