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A B S T R A C T

Recent advances in neuroimaging methods and analysis have led to an expanding body of research that in-
vestigates how large-scale brain network organization dynamically adapts to changes in one's environment,
including both internal state changes and external stimulation. It is now possible to detect changes in functional
connectivity that occur on the order of seconds, both during an unconstrained resting state and during the per-
formance of constrained cognitive tasks. It is thought that these dynamic, time-varying changes in functional
connectivity, often referred to as dynamic functional connectivity (dFC), include features that are relevant to
behavior and cognition. This review summarizes four aspects of the nascent literature directly testing that
assumption: 1) how changes in functional network organization on the order of task blocks relate to differences in
task demands and to cognitive ability; 2) how differences in dFC variability between different contexts relate to
cognitive demands and behavioral performance; 3) how ongoing fluctuations in dFC impact perception and
attention; and 4) how different patterns of dFC correspond to individual differences in cognition. The review ends
by discussing promising directions for future research in this field. First, it comments on how dFC analyses can
help to elucidate the mechanisms of healthy cognition. Next, it describes how dFC processes may be disrupted in
disease, and how probing such dysfunction can increase understanding of neural etiology, as well as behavioral
and cognitive impairments, observed in psychiatric and neurologic populations. Last, it considers the potential for
computational models to uncover neuronal mechanisms of dFC, and how both healthy cognition and disease
emerge from network dynamics.
1. Introduction

The brain has an incredible ability to dynamically adjust to a
constantly changing environment. This ability enables adaptive changes
in cognition and behavior that allow humans and animals to successfully
navigate a complex and inconstant world. An appreciation of the role of
dynamic neuronal signaling in adaptive cognition and behavior is not
new (e.g., Hebb, 1949). What is new is the ability to measure large-scale
neural functioning across the entire brain at high enough temporal and
spatial resolution to detect these dynamic changes while individuals are
engaging in complex cognition. A growing body of research, predomi-
nantly – but not exclusively – using functional magnetic resonance im-
aging (fMRI), indicates that brain network organization dynamically
changes when a constrained cognitive context changes. This could be, for
example, a change from an intrinsic, resting state to the performance of a
cognitive task; or between pairs of tasks that have different cognitive
demands (for a review, see: Medaglia et al., 2015). This literature
tember 2017; Accepted 19 Septembe
estimates what has been termed the “functional connectome”, or a
complete description of the functional connections between regions
distributed throughout the entire brain (Bullmore and Bassett, 2011).
Pairwise estimates of the functional connectivity (FC) between brain
regions are combined to form a description of whole-brain FC patterns, in
which distinct functional networks that interact with each other can be
detected. This literature largely assumes that FC remains constant across
a block of rest or a cognitive task and assesses changes in FC patterns
across those blocks, on the order of minutes. As an example, it was
recently demonstrated that whole-brain functional network organization
changed systematically during both a task probing motor execution and a
task probing working memory as compared to rest, with increased
network segregation underlying successful motor execution and
increased network integration underlying successful working memory
(Cohen and D'Esposito, 2016). With recent advances in analysis tech-
niques, it is now possible to detect time-varying changes in FC mea-
surements on the order of seconds. This rapid time-varying FC is often
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Fig. 1. Steps to conduct a dFC analysis. A) First, the brain is parcellated into nodes, which can consist of anatomical or functional regions of interest, or components derived from a data-
driven method such as independent component analysis. B) Second, the time-series across all pairs of nodes are related to each other, often by computing correlations or coherence, but
other methods such as co-activation patterns or temporal derivatives can be used as well. Commonly, this is repeated within pre-specified and overlapping “windows” of fixed length (as
pictured), but novel methods that do not require the assumptions of sliding window approaches can also be utilized, such as dynamical conditional correlations (Lindquist et al., 2014),
multiplication of temporal derivatives (Shine et al., 2015) or co-activation patterns (Liu and Duyn, 2013). C) Last, individual connectivity matrices are computed for each window. Once
multiple FC matrices are computed for each time-series, dFC analyses quantifying how the matrices differ from each other can be conducted.
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referred to as dynamic FC (dFC). Much dFC research to date has focused
on three aspects of time-varying FC patterns. First, on characterizing dFC
within resting state scans, both within and across populations (i.e., across
development or diagnoses). Second, on assessing the validity of dFC as
measured with fMRI and on improving dFC estimation techniques to
minimize artifacts and spurious findings. And third, on relating fMRI
estimates of dFC to those acquired via electrophysiological methods to
determine the neuronal source of these dynamic fluctuations in FC pat-
terns. Informative reviews of this literature have already been written
(Calhoun et al., 2014; Hutchison et al., 2013; Preti et al., 2017). The
current review takes a novel approach and highlights progress to date
regarding how these dFC measurements, during both rest and cognitive
tasks, relate to behavior and cognitive ability. With proper methodo-
logical implementation, if characteristics of these measurements are
reliably related to behavioral and cognitive outcomes it indicates that
there are aspects that are likely neural in origin.

1.1. Introduction to common dFC estimation methods

Optimal methods for estimating dFC are still being developed (for
reviews, see: Hutchison et al., 2013; Preti et al., 2017). This section
summarizes existing methods to provide context for the following dis-
cussion of the literature. Pre-processing of raw fMRI data for a dFC
analysis requires the same steps as static FC analyses, which have been
discussed in detail elsewhere (for a recent review, see: Ciric et al., 2017).
Just as with static FC analyses, the brain is then parcellated into regions
of interest, or nodes (Fig. 1A). This is often executed using structural or
functional brain atlases, or via data-driven approaches such as indepen-
dent component analysis. Once data has been sufficiently processed,
there are two main categories of methods that can be used to quantify
what is referred to as dFC. First, and more common, are various ap-
proaches to estimating short segments of static FC that, when combined,
allow for the investigation of time-varying dynamics in FC across those
segments. Second are approaches that estimate activity patterns at
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individual data acquisition timepoints, or changes in activity patterns,
and how those fluctuate across time.

The most commonly used method for quantifying dFC is the sliding
window approach. Here, FC connectivity matrices are computed over
fixed-length segments (“windows”) of the fMRI time-series. There are
limits regarding how short that length should be to minimize spurious
dynamics. Suggestions range from 40 to 100 s depending on features of
the collected data as well as processing steps implemented (Leonardi and
Van De Ville, 2015; Zalesky and Breakspear, 2015). The sliding window
approach allows for multiple connectivity matrices to be computed for
each fMRI run. Typically, separate windows overlap substantially
(Fig. 1B). Connectivity matrices can then be compared across windows to
assess how FC dynamically varies from one window to the next (Fig. 1C).
Observations within a window can be given equal weight or, alterna-
tively be down-weighted at the beginning and end of the window. This
latter method is termed a tapered sliding window. Within each window,
FC is computed as it would be in a standard, static FC analysis. With fMRI
data, this is often achieved via calculating the correlation or coherence
amongst all pairs of nodes.

An emerging method to calculate a series of FC matrices throughout
the scan is the dynamic conditional correlation (DCC) approach (Choe
et al., 2017; Lindquist et al., 2014). This is a model-based approach that
accounts for certain aspects of fMRI data that traditional sliding window
approaches cannot account for. For example, window lengths do not have
to be set in advance or equal across the length of the scan, allowing for
greater flexibility to detect non-regular changes in FC. Further, past
timepoints can be taken into account and appropriately weighted. The
DCC method has been show to improve reliability and to better fit fMRI
data than sliding window approaches (Choe et al., 2017; Lindquist
et al., 2014).

Once multiple FC matrices are constructed, there are two common
methods to quantify dynamic changes in FC. First, all connectivity
matrices across all windows and participants can be clustered into groups
of similar matrices. This can be accomplished using a clustering method
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such as k-means. With this method, each cluster centroid of a group of
individual matrices is then termed a functional “brain state”.1 Different
brain states can be compared to each other, as can characteristics such as
how often one transitions from one brain state to another or how long
one remains in a single brain state before changing to another (Calhoun
et al., 2014). Second, graph theoretical analyses can be conducted on
each FC matrix. In graph theoretical analyses, each region of interest or
independent component is considered to be a node of a graph, and each
functional connection between pairs of nodes is an edge. Various metrics
to summarize brain network organization or the roles of individual nodes
can then be calculated, and the variability of those metrics across time
can be quantified (Bullmore and Sporns, 2009).

Another method used to characterize dFC is via co-activation patterns
(Liu and Duyn, 2013). Here, significant BOLD activation at each data
acquisition time point is assessed, and similar patterns of co-activation
are clustered together. Co-activation patterns produce networks that
look similar to networks created using seed-based FC analysis or inde-
pendent component analysis, but have higher temporal resolution and
require fewer assumptions than sliding window FC approaches.
Co-activation patterns can be clustered and their temporal features
characterized similarly to FC-derived brain states.

An alternative to using co-activation patterns with similar temporal
resolution is via the multiplication of temporal derivatives (Shine et al.,
2015). This method calculates the change in BOLD activation from one
timepoint to the next. The similarity of the change across two regions of
interest is a quantification of the functional coupling between those two
regions. Pairwise FC matrices across all regions of interest are populated
by functional coupling values. FC matrices are estimated at each time-
point, which can then be treated like any other FC matrices, as described
above. Typically in this approach multiple FC matrices are averaged
together in a sliding fashion to produce more reliable estimates of
functional coupling at each timepoint. This method has been demon-
strated to be relatively more robust to head motion and other sources of
noise (Shine et al., 2015).

Lastly, psychophysiological interaction (PPI) analyses (Friston et al.,
1997) can be used to quantify dFC. PPI analyses are conducted within the
context of a general linear model. The key regressor in the model de-
scribes the interaction between a behavioral regressor (e.g., response
time or block timing) and a physiological regressor (the activity within a
seed region of interest at each time point). The interaction term describes
whether the FC between the seed region and any other voxels dynami-
cally changes as a function of the behavioral regressor. In this manner a
PPI analysis can detect behaviorally meaningful time-varying changes
in FC.

More research is needed to confirm which dFC method(s) most
accurately reflect true variation in FC across time, as well as appropriate
timescales for measuring such fluctuations. It is likely that the optimal
method changes depending on timescale and research question. Current
research, discussed in more detail below, indicates that sliding window
correlations may be particularly susceptible to noise and physiological
artifacts (including head motion). Model-based methods such as DCC, as
well as methods focusing on patterns and derivatives of co-activation, are
promising avenues for future investigations.
1 The use of the term “state” to describe a reoccurring pattern of whole-brain connec-
tivity is in parallel to the use of “state” in the human psychology literature to describe
brief, temporary aspects of an individual's arousal or emotional response (as opposed to
stable characteristics of an individual, termed “traits”). Similarly, the phrases “resting
state” or “cognitive task state” are used to refer to brief, sustained periods with a single set
of instructions to a participant that vary across conditions but are presumably maintained
within a condition. In each instance, “state” refers to a temporary condition, although the
duration of each condition can be quite variable. As an example, “task states” often last
between seconds to minutes, while “arousal states” often last between minutes to hours.
“Brain states” can be thought of as the neural underpinnings of both task and arousal states
(and are likely a combination of both), thus their timescale can range from seconds to
hours. As this review refers to each of these uses of the term “state”, throughout I will refer
to “brain states” as opposed to “arousal states” or “task states”.
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1.2. Potential mechanisms of dFC as measured with fMRI

It is critical to establish the validity of observed dynamics in FC
measurements, especially in light of recent literature questioning
whether variation in FC within a scan reflects relevant neural informa-
tion (Hindriks et al., 2016; Laumann et al., 2017; Li�egeois et al., 2017).
Dynamic FC estimations likely include a combination of meaningful
neuronal activity, physiological signals (difference in rate or volume of
blood flow, respiration, heart rate, spurious effects of motion) and noise
of acquired data. It has recently been asserted that observed fluctuations
in correlation strength of BOLD signals, in particular using sliding win-
dow analytical approaches, may be due to sampling variability and
detected even when the underlying FC is stationary (Handwerker et al.,
2012; Laumann et al., 2017). Further, the amount of fMRI data typically
collected is underpowered to detect dynamics in the data when appro-
priate statistical comparisons are made, even if such dynamics do exist. It
has been demonstrated that with 5 min of resting state data there is a
15% chance that true dynamics would be detected (Hindriks et al.,
2016). Critically, if artifacts such as motion are not appropriately
controlled for, the observation of dynamics in FC data increases spuri-
ously (Laumann et al., 2017), as do relationships between FC and
cognitive and behavioral outcome variables (Siegel et al., 2017). It is
encouraging that in both cases spurious effects are greatly mitigated if
motion and other artifacts are sufficiently removed from the data. These
findings underscore the importance of appropriately accounting for
motion, including the exclusion of high motion participants, before
conducting any FC analyses. Notably, in cases where meaningful dFC is
expected because the known arousal or cognitive state of a participant
has changed, it can be successfully detected. For example, FC matrices
change as a participant shifts between sleep and wake, as well as between
a resting state and cognitive tasks (Laumann et al., 2017). It is worth
pointing out that one metric of non-stationarity, kurtosis, is increased
both during cognitive tasks and during rest as compared to surrogate data
that has been constructed as stationary (Laumann et al., 2017). However,
whether increased kurtosis during rest is due only to fluctuations in
arousal, or to both arousal fluctuations and changes in other ongoing
cognitive processes, is still up for debate. Research relating brain states
during rest to stages of sleep based on simultaneous EEG recordings has
found that much of the variability across brain states can be accounted
for by sleep stage (Haimovici et al., 2017). Taken together, these studies
emphasize the importance of measuring and controlling for changes in
arousal when estimating dFC before attributing dFC measurements
to cognition.

Much of the above literature has focused on data using sliding win-
dow approaches. As discussed above, alternate methodology to detect
dFC has been developed. Evidence exists that some of these methods may
more accurately differentiate between static and dynamic FC. As an
example, the DCC approach is more likely to result in stable FC estimates
as compared to the sliding window approach when the underlying data is
designed to be stationary (Lindquist et al., 2014). It is also more reliable
and better able to separate signal from noise (Choe et al., 2017).
Co-activation patterns (Liu and Duyn, 2013), which recapitulate static FC
networks consistent with connectivity approaches, are another promising
method to assess dFC. These instantaneous (on the order of data acqui-
sition timing) co-occurring fluctuations of activity level may better
explain brain dynamics as assessed via fMRI than fluctuations in FC
(Li�egeois et al., 2017). While more research remains to be conducted,
these investigations imply that it is possible to detect dFC in BOLD data
both during cognitive tasks and during rest using either
appropriately-modeled correlation approaches (DCC) or changes in
activation (co-activation patterns or multiplication of temporal de-
rivatives) – provided that there is sufficient data, appropriate nuisance
regression and methodology, and relevant null models to determine
significance. While much of the below literature has used the sliding
window approach and may not appropriately implement null models, by
relating observed dynamics to measurable behavioral and cognitive



J.R. Cohen NeuroImage 180 (2018) 515–525
outcome, as well as by measuring statistical changes across known
cognitive contexts, it extends the field by providing important initial
investigations into the behavioral and cognitive relevance of observable
fluctuations in FC.

Another manner by which to validate BOLD dFC estimates is to
use multimodal imaging techniques that relate FC measurements as
assessed using fMRI to more direct measures of neuronal functioning.
This literature demonstrates relationships between BOLD dFC and
electrophysiological measures of neural functioning, including electro-
encephalography (EEG), magnetoencephalograpy (MEG), electro-
corticography (ECoG) and local field potential (LFP; Keilholz, 2014;
Tagliazucchi and Laufs, 2015). As an example, time-varying infraslow
(<1 Hz) fluctuations have been observed when using fMRI BOLD mea-
surements, ECoG in participants undergoing seizure monitoring and LFP
measurements from implanted electrodes in rats (Ko et al., 2011; Majeed
et al., 2011; Pan et al., 2013; Thompson et al., 2014). Interestingly, these
fluctuations in all modalities occur in a quasiperiodic pattern and include
semi-regular alterations within the default mode network (DMN) and
between the DMN and task-positive networks (TPNs). Both infraslow
electrical activity and DMN-TPN FC as measured with fMRI have been
linked to task performance, implying shared underlying neural mecha-
nisms (Keilholz, 2014). Dynamic changes in BOLD FC in the same
infraslow range have also been linked with higher frequencies of LFP FC.
In sliding window analyses, the change in BOLD FC between left and
right primary somatosensory cortices in rats is correlated with the change
in LFP FC within theta, high beta and gamma bands (Thompson et al.,
2013b). In humans using non-invasive electrophsyiological measure-
ments (EEG), changes in FC using sliding window analyses are associated
with changes in EEG power within the alpha, beta and gamma bands
(Chang et al., 2013; Tagliazucchi et al., 2012). Finally, whole-brain dFC
derived from both sliding windows and co-activation patterns during
simultaneous calcium imaging and BOLD measurements in mice is
significantly correlated, both within method and across method. More
specifically, sliding window BOLD dFC is related to both sliding window
and co-activation pattern calcium imaging dFC (Matsui et al., 2017).

It has been proposed that low frequency electrical activity contributes
to large-scale coordination across the brain, while higher frequencies
organize local activity. Further, it is well established that synchronization
across multiple frequencies contributes to cognition and behavior (Can-
olty and Knight, 2010). Therefore, while dFC as measured with BOLD
may not have the temporal or spatial resolution to reflect rapid changes
in local neuronal activity, it could reflect large-scale coordination across
distinct brain regions that emerges from local changes. It is reasonable,
therefore, that this large-scale coordination underlies changes in cogni-
tive state observed with behavioral measures.

In addition to probing the neuronal basis of BOLD dFC estimates and
validating estimation techniques, a third manner by which to validate the
neural relevance of dFC is to relate dFC measurements to individual
differences in cognition and behavior. This line of research aims to
determine which aspects of dFC are cognitively meaningful and therefore
likely to arise from brain function. It is this category of literature that is
the focus of the remainder of the current review.

2. Current literature

2.1. Early dynamic functional connectivity research: changes in network
organization due to changing task demands

While still an emerging body of literature in its own right, a precursor
to probing rapid dynamic alterations of FC (on the order of seconds) is
measuring changes in FC patterns that occur between entire blocks of
cognitive tasks with different demands. These studies have consistently
found that there are many similarities in network structure during rest
and during the performance of different cognitive tasks (Cole et al., 2014;
Krienen et al., 2014). Crucially, there are also meaningful task-specific
differences (Cole et al., 2013; Davison et al., 2015; Krienen et al.,
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2014). Tasks that involve integrating across multiple distinct cognitive
processes (e.g., memory, working memory, visuospatial attention)
consistently result in increased long-range connections that integrate
across distinct intrinsic networks as compared to rest or simpler tasks
(e.g., Braun et al., 2015; Cocchi et al., 2013; Cohen and D'Esposito, 2016;
Cohen et al., 2014; Davison et al., 2015; Fornito et al., 2012; Kitzbichler
et al., 2011; Spadone et al., 2015). Conversely, tasks that require less
cognitive integration, such as those probing motor execution, result in
increased segregation across distinct intrinsic networks (Bassett et al.,
2015; Cohen and D'Esposito, 2016). Studies that have probed behavior
have found that these dynamic changes in functional connections across
task blocks result in improved behavioral performance (Bassett et al.,
2015; Braun et al., 2015; Cohen and D'Esposito, 2016; Cohen et al., 2014;
Spadone et al., 2015). A recent review byMedaglia et al. (2015) discusses
this body of literature more thoroughly.

Much of the above literature calculates average (static) FC over
minutes-long task blocks. However, a recent study found that even with
short, 15 s blocks it was possible to detect systematic differences in
functional network organization during rest as compared to during a
choice reaction time task (Monti et al., 2014). Specifically,
cognitive-control related nodes of the fronto-parietal network (FPN)
became more integrated during the task as compared to rest, while nodes
of the DMN and primary sensory regions (visual, motor, auditory) did
not. This is consistent with static FC literature indicating greater inte-
gration across networks, including cognitive control networks, during
complex cognitive task blocks (Medaglia et al., 2015).

A natural extension of the above work is to determine how variable
these FC patterns are across tasks. Some studies have concluded that the
majority of functional connections do not change between rest and
cognitive tasks (Cole et al., 2014; Krienen et al., 2014). An outstanding
question is just how distinct are those functional connections that do
change. With as little as 22.5–30 s of data, current task environment was
successfully identified using a pattern classifier trained to detect whole-
brain patterns of FC within blocks (Gonzalez-Castillo et al., 2015; Shirer
et al., 2012). Tasks classified probed cognitive processes as varied as rest,
episodic memory, music, math, attention and working memory. These
findings confirm the validity of probing time-varying changes in FC
across short blocks of functional neuroimaging data. Importantly, each
task was characterized by distinct whole-brain FC patterns that were
related to specific task demands. As an example, a medial temporal
network was strongly connected during the episodic memory task, and a
language network during the music task (Leonardi et al., 2014). Inter-
estingly, during the resting state whole-brain FC patterns were better
described by a combination of the FC patterns observed during individual
tasks than by rapid alternation between the task states (Leonardi et al.,
2014). This implies that the ongoing cognitive processes that occur
during a resting state are complex and potentially reflect multiple
simultaneous cognitive domains. Notably, participants with better
behavioral performance were more accurately classified, indicating that
task engagement (or, perhaps, ability) was reflected in FC patterns
(Gonzalez-Castillo et al., 2015).

Recently, data-driven methods have been developed to detect
changes in FC patterns across nodes without requiring explicit assign-
ment of each time point to a specific task (Cribben et al., 2012, 2013).
This emphasizes the relevance of specialized FC patterns across brain
regions for task performance, once again indicating that understanding
dFC in the context of cognition is important both for our understanding of
FC dynamics as well as for our understanding of the neural basis
of cognition.

The above studies provide strong evidence for the idea that block-
wise changes in FC are important for successful cognitive performance
on a range of tasks. A natural next step is to understand how more rapid
dFC estimates subserve cognition and behavior. Such rapid dynamics
may not be directly tied to alterations in external task demands. Instead,
they may indicate changes in internally-driven factors such as attention,
motivation, fatigue or goals; or, likely, they may reflect a combination of
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both external and internal factors. An understanding of how these rapid
dynamics relate to both cognitive performance and to general cognitive
and affective state is necessary to understand the role they play in human
cognition and behavior.

2.2. Differences in the variability of functional connections between a
resting state and task performance

A relatively consistent finding in healthy young adults is that during a
resting state, whole-brain FC patterns (brain states) are quite variable
(Calhoun et al., 2014). These brain states are presumed to reflect a com-
bination of reinstantiation of past experience and preparation for future
demands on the system. They therefore represent an exploration of
possible spaces the brain can occupy (Deco and Corbetta, 2011; Ghosh
et al., 2008). A growing body of literature has linked differences in func-
tional brain network dynamics to general changes in arousal, including
levels of consciousness. Much of the literature that manipulates
drug-induced consciousness is conducted with animals. In both monkeys
and rats, reduced consciousness resulted in a dose-dependent decrease of
dFC variability during a resting state scan (Barttfeld et al., 2015; Hudetz
et al., 2015; Hutchison et al., 2014). In humans, natural fluctuations in
arousal as assessed by self-report feelings of fatigue and attention have
been related to dFC. Higher levels of fatigue were related to more stable
dFC measurements, while higher levels of attention were related to more
variable dFC measurements within a single individual across repeated
resting state scans (Shine et al., 2016b). Drug-induced arousal, such as that
which occurs due to caffeine administration, has also been shown to result
in increased variability of dFCmeasurements (Rack-Gomer and Liu, 2012).

A relevant question that follows from this literature is how dFC alters
when a cognitive environment is more constrained, such as when a
participant is engaged in a cognitive task with specific demands. Only a
few studies to date have addressed this question, and they have consis-
tently found that dFC variability decreases during a cognitive task as
compared to rest in healthy young adults (Chen et al., 2015; Elton and
Gao, 2015; Hutchison and Morton, 2015). In other words, dFC patterns
are more stable during cognitive tasks that purportedly require sustained
cognition. This appears to be a general characteristic of cognitive
engagement, as dFC variability has been shown to decrease during a
stimulus-response compatibility task (Elton and Gao, 2015; Hutchison
and Morton, 2015) and during a 2-back task probing working memory
(Chen et al., 2015). This finding is also consistent across dFC methods,
including seed-based sliding window correlations (Elton and Gao, 2015;
Hutchison and Morton, 2015) and co-activation patterns (Chen et al.,
2015). Functional brain networks demonstrating more stable dFC during
task performance include those relevant for attention and cognitive
control, including the DMN, dorsal attention network (DAN), executive
control network (ECN) and salience network (SN), as well as connections
between these networks and primary sensory networks (Chen et al.,
2015; Elton and Gao, 2015; Hutchison and Morton, 2015). Notably, a
graded impact of task condition has been observed. When comparing dFC
during a speeded task condition of a stimulus-response compatibility task
to dFC during a “relaxed” task condition, variability was decreased more
for the speeded condition (Elton and Gao, 2015). This indicates that
effort related to task difficulty may in part influence the increased sta-
bility of dFC during the execution of a cognitive task. Finally, participants
who displayed the most stable dFC during task performed the best, as
assessed via increased accuracy and more stable response times (Elton
and Gao, 2015; Hutchison and Morton, 2015). These findings underscore
the relevance of dFC within task blocks for successful cognition, high-
lighting a need to better understand this relationship.

An important direction for further research is to probe how these
network dynamics are different across populations. Hutchison and
Morton (2015) quantified the change in dFC between rest and a
stimulus-response compatibility task in participants aged 9–32. Notably,
they found a different pattern of dFC in children as compared to adults.
As stated above, dFC became more stable during the task as compared to
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rest in adults. In children, however, dFC was more stable during rest and
more variable during the task as compared to adults. This increased dFC
variability during the task was related to worse behavioral performance
as indexed by increased response time variability and increased errors.
These different functional network dynamics were not due to differences
in network structure, as both children and adults displayed similar
whole-brain FC patterns. It has been asserted that network dynamics
during rest may allow individuals to “explore” different possible brain
states (Deco and Corbetta, 2011; Ghosh et al., 2008). This dynamical
complexity may not yet be developed in childhood, a hypothesis sup-
ported by the finding that less dynamical exploration during uncon-
strained resting states was observed. It is also possible that adults can
suppress spontaneous transitions between brain states during a task with
specific cognitive constraints, but that this ability is not yet fully devel-
oped in childhood, leading to more variable dFC during cognitive tasks
(Hutchison and Morton, 2015). Future research should directly probe
whether the maturation of network dynamics is related to the emergence
of cognitive ability throughout childhood and adolescence.

Literature probing how dFC alters when individuals are placed in
different temporary states indicates systematic differences across states.
This holds whether the states are drug-induced or natural changes in
general states such as arousal (Barttfeld et al., 2015; Hudetz et al., 2015;
Hutchison et al., 2014; Rack-Gomer and Liu, 2012; Shine et al., 2016b),
or specific cognitive states such as during task performance (Chen et al.,
2015; Elton and Gao, 2015; Hutchison and Morton, 2015). Across mul-
tiple tasks and usingmultiple methods, the cognitively-relevant literature
points to a general decrease in dFC when an individual is in a constrained
cognitive environment (Chen et al., 2015; Elton and Gao, 2015; Hutch-
ison andMorton, 2015). Decreases in dFC are also observed when arousal
is decreased, whether it is due to fatigue or anesthesia (Barttfeld et al.,
2015; Hudetz et al., 2015; Hutchison et al., 2014; Shine et al., 2016b). An
important target of future work should be to understand the difference
between anesthesia-induced stability and task-induced stability. Some
hints exist currently: during anesthesia, the dominant FC brain state is
similar to underlying anatomical connectivity (Barttfeld et al., 2015).
During sustained task performance, on the other hand, the dominant FC
brain states display increased integration across cognitive control-related
networks and between cognitive-control related networks and
task-relevant networks (Elton and Gao, 2015; Hutchison and Morton,
2015). Further research probing the duration of different dFC patterns, as
well as their relation to cognitive performance, will shed light on how
these changes in dFC across different contexts contribute to cognition,
both in healthy adults as well as across populations.

2.3. Spontaneous functional connectivity dynamics impact concurrent
behavior

The literature discussed thus far relating dFC to behavior has
measured overall variability of dFC measurements during sustained
performance of a cognitive task and how that relates to average measures
of task performance, such as accuracy and response time variability. A
promising direction for further research that takes advantage of the
timescale of dFC is probing how trial-by-trial changes in FC profiles relate
to trial-by-trial performance. Some literature to date has explored this
relationship, inspired by earlier research measuring differences in BOLD
activation patterns preceding detected versus missed stimuli (Sadaghiani
and Kleinschmidt, 2013) or errors versus correct trials (Eichele et al.,
2008; Weissman et al., 2006).

Much existing literature probing pre-stimulus FC and how it relates to
behavior focuses on perception and vigilance tasks, such as detecting rare
visual or auditory stimuli, noisy coherent visual characteristics such as
color or motion, or faint, near-threshold stimuli. It has been observed that
rare visual or auditory stimuli are more likely to be detected, and
detected more quickly, when FC just preceding the stimulus is charac-
terized by a stronger anticorrelation between the DMN and TPNs,
including those that are related to cognitive control (Thompson et al.,
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2013a; Wang et al., 2016). Stronger positive correlations amongst
cognitive control networks, and between cognitive control and primary
sensory networks related to the stimulus domain, have also been asso-
ciated with faster and more accurate stimulus detection (Ekman et al.,
2012; Sadaghiani et al., 2015; Wang et al., 2016). Further, whole-brain
modularity, or the degree to which the brain separates into distinct
networks with only sparse connections across networks, has been shown
to be reduced before misses as compared to hits (Sadaghiani et al., 2015).
In other words, greater integration across networks, the DMN and
task-irrelevant sensory networks in particular, increases the likelihood
that stimuli will be missed. Notably, relationships between pre-stimulus
FC and stimulus detection have been shown to be stronger in individuals
with faster average response times (Thompson et al., 2013a). An inter-
esting link to the arousal literature discussed above is that performance
has been shown to be faster and more accurate when task FC preceding
to-be-detected stimuli was more similar to FC during high arousal periods
of a resting state scan. Conversely, poorer performance was characterized
by pre-stimulus FC that was more similar to FC during low arousal pe-
riods of a resting state scan (Wang et al., 2016). Critically, hits and misses
can be successfully differentiated by a pattern classifier trained on a
combination of pre-stimulus activity and pre-stimulus FC. Including FC
measures increased the accuracy of the classifier (Sadaghiani et al.,
2015). Taken together, these results indicate that a more connected DMN
during a task that requires sustained attention impairs performance.
Additionally, dFC of the DMN with other networks can alter on a
moment-to-moment basis, influencing observed fluctuations in behavior
in systematic ways (Sadaghiani et al., 2015; Thompson et al., 2013a;
Wang et al., 2016).

A different approach to probing how spontaneous dFC may impact
concurrent behavior was executed by Kucyi et al. (2018). To avoid the
potential confound of an external stimulus such as a visible color change or
auditory tone, participants were trained to press a button every 600ms in a
self-paced task. This design removed external stimulation while still
allowing for behavioral assessment by comparing blocks of trials that were
characterized by stable response times to blocks of trials that were char-
acterized by more variable response times. Increased response time vari-
ability was interpreted as indicating periods of increased fatigue or
distraction. Using a PPI analysis, it was found that periods of high response
time variability were characterized by higher FC within the DMN, as well
as between the DMN and SN. For a thorough review of literature
measuring changes in FC due to internal distraction, see Kucyi (2018) in
this issue. These findings support theories stating that increased DMN
connectivity to task-relevant networks may underlie lapses of attention
(Sonuga-Barke and Castellanos, 2007; Weissman et al., 2006).

The studies described in this section took advantage of the relatively
fast timescale of measurable dFC in humans using fMRI, which can detect
changes in FC on the order of seconds instead of minutes. They moved
beyond relating average characteristics of FC to average behavioral
performance, and compared transient dFC patterns to performance on a
trial-by-trial basis. This technique allows one to better characterize
within-participant differences in performance by associating different
types of trials with different patterns of functional brain network orga-
nization. It also provides external validity to estimates of within-block FC
dynamics as they relate to arousal and cognition, although the degree to
which dFC measurements relate to general arousal versus specific
cognitive processes is still up for debate. Extant literature in this domain
is focused on attention and stimulus detection paradigms, but future
work could study how dFC relates to remembered versus forgotten
events, successful versus failed response control, risky versus safe de-
cisions, and other complex cognitive processes.

2.4. Differences in patterns of dynamic functional connectivity correspond
to individual differences in cognition

By directly relating cognitive ability to features of dFC, a greater
understanding of the neural mechanisms underlying specific aspects of
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cognition, including both successes and failures, can be achieved. A small
number of studies to date have related time-varying dFC on the order of
seconds to both general and specific cognitive abilities. These studies ask
similar questions to those described above, but they extend that literature
in two critical ways. First, they extend the literature discussed in the Early
dynamic functional connectivity research: changes in network organization
due to changing task demands section by focusing on rapid changes in dFC
as opposed to sustained FC across brief task blocks. Second, they seek to
understand how dFC patterns change in reaction to alterations in external
cognitive demands, which is distinct from the Spontaneous functional
connectivity dynamics impact concurrent behavior section that emphasizes
how intrinsic changes in dFC impact responses to future external events.

As an example, Chen et al. (2016) took advantage of data from the
Human Connectome Project (https://www.humanconnectome.org/) to
probe dFC during rest in a large sample of participants. They probed how
resting state dFC related to cognitive flexibility assessed behaviorally.
Static resting state FC has been associated with general cognitive abilities
such as IQ, executive functioning, episodic memory and reading ability,
among others (for a review, see: Vaidya and Gordon, 2013). An ability
such as cognitive flexibility relies upon the flexible engagement of a
range of cognitive processes, including attention, processing speed,
response inhibition and general executive functioning. Therefore, it is
likely that it requires the flexible engagement of different networks
depending on specific current demands. It was found that dFC of the SN,
which is hypothesized to underlie the processing and facilitation of
goal-relevant stimuli, was most flexible during rest (Chen et al., 2016). In
other words, the SN was more likely to flexibly interact with many other
networks across time than other networks. Other cognitive con-
trol-related networks such as the FPN and cingulo-opercular network
(CON) had intermediate levels of flexible interactions with other net-
works as assessed via dFC. Sensory and motor networks had the most
stable dFC and interacted with the fewest number of other networks.
Crucially, when relating brain network flexibility to behavior, it was
found that higher SN flexibility was related to cognitive flexibility, but
that flexibility of the FPN and CONwas not. This study demonstrates that
the SN may be a critical hub for coordinating complex cognition and that
its role in cognition may be distinct from that of other cognitive control
networks (Chen et al., 2016). Further, it indicates that dFCmeasurements
assessed during rest have cognitive relevance. This underscores the
importance of future research relating these dynamic network charac-
teristics to cognition and behavior. Another study that utilized dFC
measurements during rest to better understand the cognitive role of
intrinsic functional networks focused its analyses on networks arising
from different functional subdivisions of posteromedial cortex (PMC), a
key node of the DMN (Yang et al., 2014). Findings from static FC studies
indicate that the PMC is a highly integrated hub node that communicates
with multiple other networks. The dFC analysis implemented in this
study identified five different whole-brain dFC profiles that involved
PMC, each of which a was a combination of multiple distinct intrinsic
networks. This finding supports the idea of PMC as a brain region that is
highly integrated across multiple networks. Further, increased time
during a resting state in one of those connectivity profiles, which was
characterized by positive correlations between a PMC subregion and
cognitive control-related networks, was related to poorer cognitive
flexibility (specifically, flexibility of thinking and concept formation;
Yang et al., 2014). These findings are consistent with prior literature
implicating DMN-cognitive control connections in impaired cognitive
performance (Kucyi et al., 2017; Sadaghiani et al., 2015; Thompson et al.,
2013a; Wang et al., 2016), and again support the relationship between
characteristics of dFC and general cognitive ability.

Shine et al. (2016a) measured dFC during both a resting state and a
battery of cognitive tasks, also using data from the Human Connectome
Project. They found that functional brain network organization dynam-
ically altered between a brain state that was characterized by greater
network segregation, and a brain state that was characterized by greater
network integration. During task engagement, more time was spent in

https://www.humanconnectome.org/
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the integrated brain state as compared to during rest, although specific
task demands altered the proportion of integration. During simpler tasks,
such as a task probing repetitive movements of various effectors, rela-
tively more time was spent in the segregated brain state. Conversely,
during complex tasks with a greater combination of cognitive demands,
such as an n-back task probing working memory, relatively more time
was spent in the integrated brain state. This is consistent with previous
research measuring reconfiguration of static FC on the level of task blocks
(Cohen and D'Esposito, 2016), as well as research relating overall dFC
during a complex stimulus-response compatibility task to that during rest
(Elton and Gao, 2015). Moreover, during a resting state these dynamic
fluctuations between a segregated brain state and an integrated brain
state were associated with pupil diameter, which is considered to be a
proxy for arousal. A greater pupil diameter was observed during brain
states characterized by greater network integration. In other words, a
transient integrated brain state during rest was associated with greater
arousal, and during task was associated with more complex cognitive
demands (as well as better performance; Shine et al., 2016a).

Taken together, the results of these studies extend earlier research
observing task-specific reconfiguration of functional network organiza-
tion in direct response to changing cognitive demands (for a review, see:
Medaglia et al., 2015). They demonstrate that functional network
reconfiguration can occur rapidly and transiently, during both rest and
during cognitive tasks, and that it is related to measures of arousal,
general cognitive ability and cognitive task performance.

3. Promising directions

3.1. Elucidating the mechanisms of cognition

There is already a long history of using task-based fMRI to understand
the neural underpinnings of human cognition and behavior. Neural
measurements can be used to confirm and update cognitive models of
behavior (D'Esposito, 2007; Frank and Badre, 2015). Likewise, further
investigations into dFC and how it relates to cognition will increase our
understanding of how different aspects of cognition operate. For
example, it is already well-established that average FC across a block
relates to average task performance on a range of cognitive tasks (Bassett
et al., 2015; Braun et al., 2015; Cohen and D'Esposito, 2016; Cohen et al.,
2014; Spadone et al., 2015), as well as to general cognitive ability (for a
review, see: Vaidya and Gordon, 2013). But the same individual may
perform differently in different contexts, due to a combination of external
stimuli (i.e., task demands) and internal changes (i.e., attention, drows-
iness; Finn et al., 2017; Poldrack et al., 2015; Shine et al., 2016b). Initial
research has related dFC to arousal (Haimovici et al., 2017; Laumann
et al., 2017; Shine et al., 2016b; Wang et al., 2016) and to arousal-related
changes in performance (Wang et al., 2016). Interestingly, low arousal
states are characterized by decreased network dynamics (Barttfeld et al.,
2015; Hudetz et al., 2015; Hutchison et al., 2014; Shine et al., 2016b), as
are states of high task engagement, presumably accompanied by rela-
tively high arousal and attention (Chen et al., 2015; Elton and Gao, 2015;
Hutchison and Morton, 2015). It is thought that the stability observed
during low arousal states may reflect underlying anatomical connections
(Barttfeld et al., 2015), while the stability observed during active
engagement in complex cognition may reflect greater integration across
networks relevant to the specific task and to control processes (Elton and
Gao, 2015; Hutchison and Morton, 2015). A highly integrated brain state
is more costly metabolically (Bullmore and Sporns, 2012) and, while
perhaps necessary for successful cognition, may only be sustainable for
brief periods of time. Further research characterizing specific dFC dif-
ferences during low arousal and high arousal, and how those relate to
changes in performance across a range of cognitive tasks, would inform
our understanding of different underlying sources of functional network
stability, as well as how brain state transitions contribute to cognition
above and beyond general arousal levels.

This literature could capitalize on the findings from static FC
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literature that has characterized network reconfiguration across sus-
tained cognitive task conditions. As an example of an instance of this
strategy, using static FC methods it has been found found that functional
network organization during the performance of a task probing motor
execution was similar to that during rest and characterized by network
segregation, whereas network organization during the performance of a
task probing working memory was characterized by network integration
(Cohen and D'Esposito, 2016). Using complementary dFCmethods, Shine
et al. (2016a) found that during both rest and specific tasks, the brain
dynamically alternated between a segregated brain state and an inte-
grated brain state. The most time spent in the segregated brain state was
during rest, closely followed by a task probing motor execution. The most
time spent in the integrated brain state was during a task probing
working memory. The results from these two studies are consistent, but
the dFC analysis adds extra information about how dFC underlies
cognitive performance that cannot be detected using static FC methods
(Fig. 2). Further refinement of these methods to relate the occurrence of
different dFC brain states to performance on specific trials would expand
literature probing the impact of concurrent dFC patterns on
within-participant performance differences.

To date, there has been some research investigating how dFC impacts
trial-by-trial differences in performance. Much of this literature has
focused on slow perception tasks with the shortest interval between trials
being 4 s, and the longest 480 s (Sadaghiani et al., 2015; Thompson et al.,
2013a; Wang et al., 2016). This literature has indicated that specific
patterns of FC that are ongoing before a stimulus occurs impact detection
of that stimulus. These findings extend literature that has observed that
different ongoing patterns of brain activity impact current behavior (for a
review, see: Sadaghiani and Kleinschmidt, 2013). Future research can
apply these techniques to more complex cognitive tasks in order to learn
more about how dynamics of functional brain network organization
contribute to various aspects of cognitive performance, such as errors on
tasks, improved learning, identification of ambiguous stimuli, or suc-
cessful remembering as compared to forgetting. Further, these tech-
niques may shed light on features of functional network organization that
underlie phenomena such as priming by stimuli that do not
reach awareness.

Importantly, the high overlap in overall FC patterns between rest and
various task states (Cole et al., 2014; Krienen et al., 2014) implies that
cognitively-relevant changes are minimal, while the consistent relation-
ships to performance imply that those changes are meaningful. Better
characterizing the functional connections that are task- or cognitive
process-specific on the level of task blocks would allow for systematic
investigations of the dynamics of those connections across a block in
relation to behavioral performance. With precise hypotheses and
appropriate methodology, such research would be able to concretely link
dynamic changes in FC strength between specific brain regions (or
groups of regions) to specific aspects of cognition. As an example, a
recent study took advantage of the high temporal resolution of MEG data
to examine differences in FC between specific pairs of brain regions
within individual trials during a learning task (Fatima et al., 2016).
Participants who learned the task quickly displayed strong FC between
left inferior parietal cortex and left posterior cingulate cortex during the
first 200 ms of each trial, while slower learners displayed strong FC be-
tween those two regions during the last 200 ms of each trial. Inferior
parietal-posterior cingulate FC was correlated with visuospatial ability in
all participants, but with early FC strength in fast learners and with late
FC strength in slow learners.

Crucially, if patterns of dFC linked to specific cognitive processes are
identified, and those same patterns are recapitulated during resting state
scans, this literature could help inform whether dynamics during rest
may be linked in part to ongoing cognitive processes. Additionally,
examining the relationship between activation changes and FC changes,
which are thought to be distinct and to have additive properties on
network organization and on behavior (Gratton et al., 2016; Khambhati
et al., 2018), would further elucidate the dynamic mechanisms



Fig. 2. DFC analyses complement and extend static FC analyses. A) Using static FC methods, whole-brain functional network organization was found to reconfigure between rest and
an n-back task that probed working memory (Cohen and D'Esposito, 2016). In the left panel each color represents a network, each colored line represents a within-network edge, and each
black line represents a between-network edge. On the top, nodes are depicted based on connections; nodes with more shared connections are closer together. On the bottom, nodes are
depicted in brain space; each circle corresponds to the coordinates of the center of each node. Note that there is greater integration across distinct networks during the n-back task as
compared to rest. In the right panel, the number of connector hub nodes is compared across rest, n-back, and during a sequence tapping task that probed motor execution. Connector hubs
are nodes with high inter-network connectivity. The number of connector hubs did not change during sequence tapping as compared to rest, but it increased during the n-back task as
compared to rest. Figure adapted with permission from Cohen and D'Esposito (2016). **p < 0.01. B) Using dFC methods, participation coefficient (BT) was found to fluctuate as current
task changed (Shine et al., 2016a). Participation coefficient measures how connected a node is across networks; connector nodes are defined as nodes with high participation coefficients.
The left panel demonstrates that using dFC analyses, average participation coefficient (thick black line; individual participant data plotted in gray) varied along with task blocks (task
regressors plotted in blue). The right panel demonstrates the extent to which whole-brain FC profiles shifted toward a more integrated brain state (high BT) during different tasks as
compared to rest. Consistent with Cohen and D'Esposito (2016), during motor task performance the extent of integration was most similar that during rest, while during n-back per-
formance the extent of integration was much stronger. Figure adapted with permission from Shine et al. (2016a).
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underlying specific aspects of cognition. In this manner, we can inform
cognitive theory by implementing novel neuroscience techniques (Frank
and Badre, 2015).
3.2. Clinical relevance

An extremely consistent finding across the static FC literature, and
that is emerging in the newer dFC literature, is that there are reliable
differences in both static FC and dFC between psychiatric and neurologic
patients and healthy individuals (for reviews, see: Calhoun et al., 2014;
Xia and He, 2011). To date, most of the literature finding differences in
dFC across groups has focused on describing differences in the resting
state. Interestingly, specific brain states appear to be quite similar be-
tween patients and healthy control participants. In other words, it is not
the whole-brain patterns of FC that differentiate groups. Instead, it is the
number and form of dynamical transitions across brain states, as well as
the frequency of brain states. As an example, it was found that
throughout the course of a resting state scan patients with schizophrenia
dynamically transitioned between five different brain states with similar
FC patterns to those observed in healthy control participants (Damaraju
et al., 2014). However, patients with schizophrenia spent significantly
more time in a disconnected brain state that displayed lower overall FC
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within and between functional networks. Further, they transitioned less
often than control participants to more highly integrated brain states
(Damaraju et al., 2014).

It is interesting to note that a striking result of multiple studies is that
individual whole-brain patterns of reoccurring functional brain states are
similar across conditions or groups. This has been shown to be the case
when comparing rest to tasks (Hutchison and Morton, 2015; Shine et al.,
2016a), when comparing children to adults (Hutchison and Morton,
2015) and when comparing patients with schizophrenia to healthy in-
dividuals (Damaraju et al., 2014). The critical difference, therefore, ap-
pears not to be in brain state FC organization itself, but in the dynamics of
the brain states. It is thus possible that by improving our understanding of
how each of these brain states relates to specific aspects of cognition, we
can additionally improve our understanding of ongoing internal pro-
cesses in patients as compared to healthy individuals. With powerful
data-driven methods that can detect brain state transition points without
requiring advance knowledge of internal state transitions (Cribben et al.,
2012, 2013), future research can clarify the timing of these transitions
and how it varies across patient groups. This technique may be particu-
larly useful in populations in which it is hard to collect reliable behav-
ioral data during an MRI scan, such as in young children, patients with
dementia or patients with severe cognitive deficits.



J.R. Cohen NeuroImage 180 (2018) 515–525
DFC methods additionally allow us to test hypotheses related to rapid
changes in FC that have previously been difficult to test directly using
functional neuroimaging data. As an example, it has been proposed that
attention lapses in attention deficit hyperactivity disorder (ADHD) result
from intrusions of the DMN into active task states, during which DMN
activity and connectivity with other networks is often reduced or anti-
correlated in healthy individuals (Sonuga-Barke and Castellanos, 2007).
This hypothesis could be directly tested with dFC methods during a
cognitive task in which indices of attention lapses, such as prolonged
response times or increased errors, can be measured and dFC patterns
preceding those periods can be related to behavior. Further, it has
already been observed in healthy individuals that increased time during a
resting state scan of a particular dFC pattern involving the PMC region of
the DMN is related to reduced cognitive flexibility (Yang et al., 2014). If
one were to observe more time spent in a brain state related to attention
lapses during a task in ADHD than in healthy control participants, this
would provide support for the default mode interference hypothesis. This
could be a biomarker for ADHD specifically or for any population char-
acterized by greater inattention. As another example, autism spectrum
disorder (ASD) is characterized by cognitive and behavioral inflexibility.
It has been shown that there are fewer differences in static network
connectivity between two different tasks (an arithmetic task and a social
attention task) in patients with ASD than in healthy individuals, and that
greater network similarity across those two tasks is related to more se-
vere repetitive behaviors (Uddin et al., 2015). Analyses taking advantage
of dFC methods could directly test the hypothesis that brain network
inflexibility is a characteristic of individuals with ASD.

Research probing dFC differences across cognitive task states in
healthy individuals has successfully identified different task conditions
using pattern classification (Gonzalez-Castillo et al., 2015; Shirer et al.,
2012). These methods could be applied to clinical data to determine
whether patients can be successfully differentiated from healthy in-
dividuals based on their dFC characteristics, both during a resting state and
during specific cognitive tasks. During a resting state, it has been
demonstrated that healthy individuals, patients with schizophrenia and
patients with bipolar disorder could be differentiated from each other at
approximately 84% accuracy by including dFC features in a classifier. A
classifier based solely on static FC features was only able to accurately
classify the groups at 59% accuracy, which is significantly higher than
chance (35%) but significantly lower than that obtained using dFC features
(Rashid et al., 2016). This is a promising approach that should be extended
to other disorders. It is likely that in patients dFC differs in meaningful
ways both during rest and during tasks, therefore combining both resting
state and task data may increase our ability to differentiate across di-
agnoses and to better understand how dFC patterns during rest are related
to dFC during externally-driven cognitive processes. Moreover, by identi-
fying the features that contribute most to classification accuracy, a greater
understanding of differences across patient groups may be obtained. This
is particularly relevant for disorders that are difficult to differentiate
clinically (e.g., schizophrenia and bipolar disorder), as well as for disorders
that show high comorbidity (e.g., ADHD and ASD). If critical classification
features overlap with specific cognitive task states that have been observed
in healthy individuals, this line of research could further our under-
standing of what differentiates patients from control participants.

It is important to acknowledge that much of the research probing dFC
in patient populations utilizes sliding window correlations to charac-
terize dynamics. As has been noted, it is possible that many of the group
differences are due to various sources of noise, such as differences in
motion or respiration rate across groups or to general changes in arousal,
which also may be systematically different across groups. Future research
could confirm whether the significant differences across populations
include a neurally-based component by implementing methodology that
is less susceptible to noise, utilizing appropriate null models and tracking
general levels of arousal. Additionally, if brain states identified during
rest match those identified during cognitive tasks, it may be possible to
glean differences in ongoing cognition across populations from resting
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state dFC.

3.3. Computational modeling

Currently, dFC characteristics can be estimated but the mechanisms
underlying these measurements, as well as the degree to which they are
of neural origin, are unknown. A critical next step in our understanding of
dFC and how it relates to behavior and cognition is to move beyond
descriptive measures of dFC, and to probe how these dynamic functional
connections evolve, as well as how cognition arises from these dynamics
(Bargmann and Marder, 2013; Kopell et al., 2014). As stated earlier, a
growing body of literature is using multimodal imaging in an attempt to
uncover the neuronal mechanisms that give rise to dFC (Keilholz, 2014;
Kopell et al., 2014; Tagliazucchi and Laufs, 2015). Another method that
can be used to reveal the mechanisms of network dynamics and how such
dynamics underlie cognition is biologically plausible computational
modeling. Reviews exist that describe state-of-the-art computational
modeling techniques that detail how neuronal firing can give rise to
dynamic large-scale network structure as measured during fMRI
(Breakspear, 2017; Cabral et al., 2017; Deco and Corbetta, 2011; Deco
et al., 2013). While features of existing models differ, they uniformly
make two assumptions. First, that underlying anatomical connectivity
constrains large-scale functional network connectivity. Second, that
observable variations in FC arise from a combination of noise, internal
state and external stimulation, among other characteristics. One inter-
esting feature of these models is that there are multiple stable states,
termed attractors. Noise introduced to the system can push a model from
one relatively stable state to another, just as external stimuli from
cognitive tasks, or internal states such as arousal, have been shown to be
systematically related to different dFC brain states. Notably, the idea of
alternating between more segregated and more integrated brain states
depending upon cognitive task demands (Shine et al., 2016a) has been
confirmed with computational models (Deco et al., 2015). Further,
computational models can successfully predict the functional network
dynamics observed during sleep and awake states, in disease (schizo-
phrenia), and in successful treatment of disease (the effects of deep brain
stimulation in Parkinson's Disease; Deco and Kringelbach, 2014).

Not much work has been conducted to date exploring how compu-
tational models of dynamic large-scale network functioning predict dFC
alterations in response to changes in cognitive demands, so this is a
fruitful avenue for further research. For example, these models may
explain the decrease in dFC both when under anesthesia as well as when
focused on a cognitive task, and how those two brain states with
increased stability differ from each other. Further, by introducing the
structural and functional changes that occur throughout the lifespan to a
computational model, we may be able to better understand how dFC
changes and perhaps underlies cognitive development and decline. Last,
the models that successfully explain characteristics of certain diseases,
such as schizophrenia, may help us understand how both symptoms and
cognitive deficits emerge from underlying dysfunctional network dy-
namics, as well as identify targets for treatment.

4. Conclusion

In conclusion, the observation of dFC patterns using fMRI has opened
the door to an entire field of research exploring the mechanisms and the
meaning of these functional network dynamics. While this field is still in
its infancy, important early work has identified characteristics of dFC
that systematically vary with changes in arousal and cognitive demands,
and that are related to cognitive ability. Critically, changes in dFC track
changes in behavior within an individual, underscoring its potential
importance for human cognition. Further work remains to be conducted
to uncover the neuronal underpinnings of dFC, to separate relevant
neural dynamics from physiological and other noise, to improve meth-
odology and the accuracy of dFC estimates and, critically, to determine
how dFC translates to behavior and cognition. A greater understanding of
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functional network dynamics will contribute to our knowledge of the
mechanisms underlying healthy cognition, as well as cognitive impair-
ments and symptoms observed in neurologic and psychiatric disorders.
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