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A B S T R A C T

Due to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid functional connectivity (FC) changes that occur during resting-state
functional magnetic resonance imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically challenging, due to the low signal-to-
noise ratio of the blood oxygen level dependent (BOLD) signal in fMRI and the massive number of data points generated during the analysis. Thus, it is important
to establish methods and summary measures that maximize reliability and the utility of dynamic FC to provide insight into brain function. In this study, we inves-
tigated the reliability of dynamic FC summary measures derived using three commonly used estimation methods - sliding window (SW), tapered sliding window
(TSW), and dynamic conditional correlations (DCC) methods. We applied each of these techniques to two publicly available rs-fMRI test-retest data sets - the Multi-
Modal MRI Reproducibility Resource (Kirby Data) and the Human Connectome Project (HCP Data). The reliability of two categories of dynamic FC summary measures
were assessed, specifically basic summary statistics of the dynamic correlations and summary measures derived from recurring whole-brain patterns of FC (“brain
states”). The results provide evidence that dynamic correlations are reliably detected in both test-retest data sets, and the DCC method outperforms SW methods in
terms of the reliability of summary statistics. However, across all estimation methods, reliability of the brain state-derived measures was low. Notably, the results also
show that the DCC-derived dynamic correlation variances are significantly more reliable than those derived using the non-parametric estimation methods. This is
important, as the fluctuations of dynamic FC (i.e., its variance) has a strong potential to provide summary measures that can be used to find meaningful individual
differences in dynamic FC. We therefore conclude that utilizing the variance of the dynamic connectivity is an important component in any dynamic FC-derived
summary measure.
1. Introduction

The functional organization of the brain has a rich spatio-temporal
structure that can be probed using functional connectivity (FC) mea-
sures. Defined as the undirected association between functional magnetic
resonance imaging (fMRI) time series from two or more brain regions, FC
has been shown to change with age (Betzel et al., 2014; Gu et al., 2015),
training (Bassett et al., 2015, 2011), levels of consciousness (Hudson
et al., 2014), and across various stages of sleep (Tagliazucchi and Laufs,
2014). Traditionally, FC has been assumed to be constant across a given
experimental run. However, recent studies have begun to probe the
temporal dynamics of FC on shorter timescales (i.e., seconds instead of
entire runs lasting many minutes) (Hutchison et al., 2013a; Preti et al.,
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2016). Such rapid alterations in FC are thought to allow the brain to
continuously sample various configurations of its functional repertoire
(Sadaghiani et al., 2015; Preti et al., 2016). These studies of dynamic FC
have also enabled the classification of whole-brain dynamic FC profiles
into distinct “brain states”, defined as recurring whole-brain connectivity
profiles that are reliably observed across subjects throughout the course
of a resting state run (Calhoun et al., 2014). A common approach to
determining the presence of such coherent brain states across subjects is
to perform k-means clustering on the correlation matrices across time.
Brain states can then be summarized as the patterns of connectivity at
each centroid, and additional summary metrics such as the amount of
time each subject spends in a given state can be computed. Using this
definition of brain state, it has been shown that the patterns of
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connectivity describing each state are reliably observed across groups
and individuals (Yang et al., 2014), while other characteristics such as
the amount of time spent in specific states and the number of transitions
between states vary with meaningful individual differences such as age
(Hutchison and Morton, 2015; Marusak et al., 2017) or disease status
(Damaraju et al., 2014; Rashid et al., 2014). However, this approach
towards understanding what has recently been termed the “chron-
nectome” is still in its infancy (Calhoun et al., 2014).

A number of methodological issues have limited the interpretability
of existing studies using dynamic connectivity. For instance, detecting
reliable and neurally-relevant dynamics in FC is challenging when there
are no external stimuli to model. Dynamic FC research generally relies
upon the use of resting state fMRI (rs-fMRI) data and therefore, it is
unclear whether the states that are identified accurately reflect under-
lying cognitive states. Another issue is that dynamic FC methods sub-
stantially increase the number of data points to consider initially (e.g., a
T � d (time-by-region) input matrix becomes a d� d� T array). This is in
contrast to statistical methods that reduce the dimensionality of the data.
Also, the signal-to-noise ratio of the blood oxygen level dependent
(BOLD) signal in rs-fMRI is low, and it is often unclear whether observed
fluctuations in the temporal correlation between brain regions should be
attributed to dynamic neural activity, non-neural biological signals (such
as respiration or cardiac pulsation), or noise (Handwerker et al., 2012;
Hlinka and Hadrava, 2015). Due to these methodological challenges,
metrics of dynamic FC are sensitive to the method used to estimate them
(Lindquist et al., 2014; Hlinka and Hadrava, 2015; Leonardi and Van De
Ville, 2015), and uncertainty remains regarding the appropriate esti-
mation method to use. An important concern moving forward is to
establish methods that maximize the reliability of dynamic FC metrics,
which in turn will enhance our ability to use individual variability in
dynamic FC metrics to understand individual variability in behavior and
cognitive function.

The most widely used method for detecting dynamic FC is the sliding
window (SW) method, in which correlation matrices are computed over
fixed-length, windowed segments of the fMRI time series. These time
segments can be derived from individual voxels (Handwerker et al.,
2012; Hutchison et al., 2013b; Leonardi and Van De Ville, 2015), aver-
aged over pre-specified regions of interest (Chang and Glover, 2010), or
estimated using data-driven methods such as independent component
analysis (Allen et al., 2012a; Yaesoubi et al., 2015). Observations within
the fixed-length window can be given equal weight as in the conventional
SW method, or allowed to gradually enter and exit the window as it is
shifted across time, a strategy that is used by the tapered sliding window
(TSW) method (Allen et al., 2012a). Potential pitfalls of the family of SW
methods include the use of arbitrarily chosen fixed-length windows,
disregard of values outside of the windows, and an inability to handle
abrupt changes in connectivity patterns.

Model-based multivariate volatility methods attempt to address these
shortcomings through flexible modeling of dynamic correlations and
variances. Widely used to forecast time-varying conditional correlations
in financial time series, model-based multivariate volatility methods
have consistently been shown to outperform SW methods (Hansen and
Lunde, 2005). The dynamic conditional correlations (DCC) method is an
example of a model-based multivariate volatility method that has
recently been introduced to the neuroimaging field (Lindquist et al.,
2014). Considered as one of the best multivariate generalized auto-
regressive conditional heteroscedastic (GARCH) models (Engle, 2002),
the DCC method effectively estimates all model parameters through
quasi-maximum likelihood methods. Additionally, the asymptotic theory
of the DCC model provides a mechanism for statistical inference that is
not readily available when using other techniques for estimating dy-
namic correlations, though such mechanisms are currently under devel-
opment (Kudela et al., 2017). In a previous study, simulations and
analyses of experimental rs-fMRI data suggested that the DCC method
achieved the best overall balance between sensitivity and specificity in
detecting temporal changes in FC (Lindquist et al., 2014). Specifically, it
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was shown that the DCC method was less susceptible to noise-induced
temporal variability in correlations compared to the SW method and
other multivariate volatility methods.

The goal of this study was to identify estimation methods that provide
accurate and reliable measures of various dynamic FC metrics. In
particular, we compared the reliability of summary measures estimated
using a family of SW methods (that represent the most commonly used
dynamic FC estimation methods) and those estimated using the DCC
method (that represents a more advanced model-based multivariate
volatility method). We assessed the reliability of two types of dynamic FC
summary measures: 1) basic summary statistics, specifically the mean
and variance of dynamic FC across time, and 2) statistics derived from
brain states, specifically the dwell time and number of change points
between states. We compared the reliability of these methods using two
publicly available rs-fMRI test-retest data sets: 1) the Multi-Modal MRI
Reproducibility Resource (Kirby) data set (Landman et al., 2011), which
used a well-established echo planar imaging (EPI) sequence with a
repetition time (TR) of 2000 ms, and 2) the Human Connectome Project
500 Subjects Data Release (HCP) data set (Van Essen et al., 2013), which
used a simultaneous multi-slice EPI sequence with a TR of 720 ms. These
two data sets differ in terms of the acquisition parameters used and in the
preprocessing steps performed to clean the data, with acquisition and
processing parameters for the former representing well-established pro-
cedures used by many rs-fMRI researchers, and those for the latter rep-
resenting cutting-edge procedures designed to optimize data quality. We
hypothesized that the DCC-estimated dynamic FC summary measures
would be more reliable than those estimated using the conventional SW
and TSW methods, and that dynamic FC summary measures obtained
using the HCP data would be more reliable than those obtained using the
Kirby data.

2. Methods

2.1. Image acquisition

2.1.1. Kirby data
We used the Multi-Modal MRI Reproducibility Resource (Kirby) from

the F.M. Kirby Research Center to evaluate the reliability of dynamic FC
summary measures obtained using a typical-length, standard EPI
sequence, which were cleaned using established preprocessing proced-
ures. This resource is publicly available at http://www.nitrc.org/
projects/multimodal. Please see Landman et al. (2011) for a detailed
explanation of the entire acquisition protocol. Briefly, this resource in-
cludes data from 21 healthy adult participants who were scanned on a 3T
Philips Achieva scanner. The scanner is designed to achieve 80 mT/m
maximum gradient strength with body coil excitation and an eight
channel phased array SENSitivity Encoding (SENSE) (Pruessmann et al.,
1999) head-coil for reception. Participants completed two scanning ses-
sions on the same day, between which participants briefly exited the scan
room and a full repositioning of the participant, coils, blankets, and pads
occurred prior to the second session. A T1-weighted (T1w)
Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE)
structural run was acquired during both sessions (acquisition
time ¼ 6 min, TR/TE/TI ¼ 6.7/3.1/842 ms,
resolution ¼ 1 � 1 � 1.2 mm3, SENSE factor ¼ 2, flip angle ¼ 8�). A
multi-slice SENSE-EPI pulse sequence (Stehling et al., 1991; Pruessmann
et al., 1999) was used to acquire one rs-fMRI run during each session,
where each run consisted of 210 vol sampled every 2 s at 3-mm isotropic
spatial resolution (acquisition time: 7 min, TE ¼ 30 ms, SENSE acceler-
ation factor ¼ 2, flip angle ¼ 75�, 37 axial slices collected sequentially
with a 1-mm gap). Participants were instructed to rest comfortably while
remaining as still as possible, and no other instruction was provided. We
will refer to the first rs-fMRI run collected as session 1 and the second as
session 2. One participant was excluded from data analyses due to
excessive motion.

http://www.nitrc.org/projects/multimodal
http://www.nitrc.org/projects/multimodal
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2.1.2. HCP data
We used the 2014 Human Connectome Project 500

Parcellation þ Timeseries þ Netmats (HCP500-PTN) data release to
evaluate the reliability of dynamic FC summary measures obtained using
a larger data set of 523 healthy adults, sampled at a higher temporal
frequency for a longer duration, and cleaned using cutting-edge pre-
processing procedures. This resource is publicly available at http://
humanconnectome.org. Please see Van Essen et al. (2013) for a
detailed explanation of the entire acquisition protocol. Briefly, all HCP
MRI data were acquired on a customized 3T Siemens connectome-Skyra
3T scanner, designed to achieve 100 mT/m gradient strength. Partici-
pants completed two scanning sessions on two separate days. A T1w
MPRAGE structural run was acquired during each session (acquisition
time ¼ 7.6 min, TR/TE/TI ¼ 2400/2.14/1000 ms,
resolution ¼ 0.7 � 0.7 � 0.7 mm3, SENSE factor ¼ 2, flip angle ¼ 8�). A
simultaneous multi-slice pulse sequence with an acceleration factor of
eight (U�gurbil et al., 2013) was used to acquire two rs-fMRI runs during
each session, which consisted of 1200 vol sampled every 0.72 s, at 2-mm
isotropic spatial resolution (acquisition time: 14 min 24 sec,
TE ¼ 33.1 ms, flip angle ¼ 52�, 72 axial slices). Participants were
instructed to keep their eyes open and fixated on a cross hair on the
screen, while remaining as still as possible. Within sessions, phase
encoding directions for the two runs were alternated between right-to-
left (RL) and left-to-right (LR) directions. Counterbalancing the order
of the different phase-encoding acquisitions for the rs-fMRI runs across
days was adopted on October 1, 2012 (RL followed by LR on Day 1; LR
followed by RL on Day 2). Prior to that, rs-fMRI runs were acquired using
the RL followed by LR order on both days. We limited our analyses to
data from the 461 participants included in the HCP500-PTN release who
completed the full rs-fMRI protocol. We will refer to the two runs
collected during the first visit as sessions 1A and 1B and the two collected
during the second visit as sessions 2A and 2B. Note that subjects did not
exit the scanner between runs collected on the same day.

2.2. Image processing

2.2.1. Kirby data
SPM8 (Wellcome Trust Center for Neuroimaging, London, United

Kingdom) (Friston et al., 1994) and MATLAB (The Mathworks, Inc.,
Natick, MA) were used to preprocess the Kirby data. In order to allow the
stabilization of magnetization, four volumes were discarded at acquisi-
tion, and an additional volume was discarded prior to preprocessing.
Slice timing correction was performed using the slice acquired at the
middle of the TR as a reference, and rigid body realignment parameters
were estimated to adjust for head motion. Structural runs were registered
to the first functional frame and spatially normalized to Montreal
Neurological Institute (MNI) space using SPM8's unified segmentation-
normalization algorithm (Ashburner and Friston, 2005). The estimated
rigid body and nonlinear spatial transformations were applied to the rs-
fMRI data, which were then high pass filtered using a cutoff frequency of
0.01 Hz. Rs-fMRI data were then spatially smoothed using a 6-mm full-
width-at-half-maximum Gaussian kernel (i.e., twice the nominal size of
the rs-fMRI acquisition voxel).

The Group ICA of fMRI toolbox (GIFT) (http://mialab.mrn.org/
software/gift; Medical Image Analysis Lab, Albuquerque, New Mexico)
was used to estimate the number of independent components (ICs) in the
data, to perform data reduction via principal component analysis (PCA)
prior to independent component analysis (ICA), and then to perform
group independent component analysis (GICA) (Calhoun et al., 2001) on
the PCA-reduced data. Estimation of the number of ICs was guided by
order selection using the minimum description length (MDL) criterion (Li
et al., 2007). Across subjects and sessions, 56 was the maximum esti-
mated number of ICs and 39 was the median. Prior to GICA, the image
mean was removed from each time point for each session, and three steps
of PCA were performed. Individual session data were first reduced to 112
principal components, and the reduced session data were then
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concatenated within subjects in the temporal direction and further
reduced to 56 principal components. Finally, the data were concatenated
across subjects and reduced to 39 principal components. The dimen-
sionality of individual session PCA (i.e., 112) was chosen by doubling the
estimated maximum IC number (i.e., 56), to ensure robust back-
reconstruction (Allen et al., 2011, 2012b) of subject- and session-
specific spatial maps and time courses from the group-level indepen-
dent components. Using the ICASSO toolbox (Himberg et al., 2004), ICA
was repeated on these 39 group-level principal components 10 times,
utilizing the Infomax algorithm with random initial conditions (Bell and
Sejnowski, 1995). ICASSO clustered the resulting 390 ICs across itera-
tions using a group average-link hierarchical strategy, and 39 aggregate
spatial maps were defined as the modes of the clusters. Subject- and
session-specific spatial maps and time courses were generated from these
aggregate ICs using the GICA3 algorithm, which is a method based on
PCA compression and projection (Erhardt et al., 2011).

We compared the spatial distribution of each of the group-level,
aggregate ICs to a publicly available set of 100 unthresholded t-maps
of ICs estimated using rs-fMRI data collected from 405 healthy partici-
pants (Allen et al., 2012a). These t-maps have already been classified as
resting state networks (RSNs) or noise by a group of experts, and the 50
components classified as RSNs have been organized into seven large
functional groups: visual (Vis), auditory (Aud), somatomotor (SM),
default mode (DMN), cognitive-control (CC), sub-cortical (SC) and
cerebellar (Cb) networks. Henceforth, we refer to these as the Allen
components (all 100) and the Allen RSNs (50 signal components). For
each of the group-level spatial maps, we calculated the percent variance
explained by the seven sets of Allen RSNs. The functional assignment of
each Kirby component was determined by the set of Allen components
that explained the most variance, and if the top two sets of Allen RSNs
explained less than 50% of the variance in a Kirby component, the Kirby
component was labeled as noise. Subject- and run-specific time series
from the components then served as input for the dynamic FC analyses
described below.

2.2.2. HCP data
We used the preprocessed and artifact-removed rs-fMRI data as pro-

vided by the HCP500-PTN data release. The preprocessing and the
artifact-removing procedures performed on the data are explained in
detail elsewhere (Glasser et al., 2013; Smith et al., 2013; Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014), and briefly described below. Each
run was minimally preprocessed (Glasser et al., 2013; Smith et al., 2013),
and artifacts were removed using the Oxford Center for Functional MRI
of the Brain's (FMRIB) ICA-based X-noiseifier (ICA þ FIX) procedure
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014). At this point in the
processing pipeline, rs-fMRI data from each run were represented as a
time series of grayordinates, a combination of cortical surface vertices
and subcortical standard-space voxels (Glasser et al., 2013). Each run was
temporally demeaned and variance normalized (Beckmann and Smith,
2004). All four runs for 461 subjects were fed into MELODIC's Incre-
mental Group-Principal Component Analysis (MIGP) algorithm, which
estimated the top 4500 weighted spatial eigenvectors. GICA was applied
to the output of MIGP using FSL's MELODIC tool (Beckmann and Smith,
2004) using five different dimensions (i.e., number of independent
components: 25, 50, 100, 200, 300). In this study, we used the data
corresponding to dimension d ¼ 50 to perform further dynamic FC
analysis, which was closest to the dimension used for the Kirby data (i.e.,
39). Dual-regression was then used to map group-level spatial maps of
the components onto each subject's time series data (Filippini et al.,
2009). For dual-regression, the time series of each of the runs were first
concatenated within subjects in the following order: Day 1 LR, Day 1 RL,
Day 2 LR, Day 2 RL (http://www.mail-archive.com/hcp-users@
humanconnectome.org/msg02054.html; S. M. Smith, personal commu-
nication, 24 October 2015). Then the full set of group-level maps were
used as spatial regressors against each subject's full time series (4800 vol)
to obtain a single representative time series per IC. The functional
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assignment of each component was determined as described above (refer
to section 2.2.1) using the Allen RSNs. Subject- and run-specific time
series from the components then served as input for the dynamic FC
analyses described below.
2.3. Computing dynamic functional connectivity

Dynamic FC between multiple regions of the brain are often repre-
sented using either a covariance or correlation matrix, that represent the
relationship between different brain regions or components. In this
study, the elements of the correlation matrix were estimated using the
SW, TSW and DCC methods.

2.3.1. Sliding window methods
Perhaps the simplest approach for estimating the elements of the

covariance/correlation matrix is to use the SW method. Here, a time
window of fixed length w is selected, and data points within that window
are used to calculate the correlation coefficients. The window is there-
after shifted across time and a new correlation coefficient is computed for
each time point. The general form of the estimate of the SW correlation is
given by

bρt ¼
Pt�1

s¼t�w�1

�
y1;s � bμ1;s

��
y2;s � bμ2;s

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Pt�1
s¼t�w�1

�
y1;s � bμ1;s

�2��Pt�1
s¼t�w�1

�
y2;s � bμ1;s

�2�r (1)

where bμi;t , i ¼ 1;2 represents the estimated time-varying mean.
The SW method gives equal weight to all observations within w time

points in the past and 0 weight to all others. Hence, the removal of a
highly influential outlying data point will cause a sudden change in the
dynamic correlation that may be mistaken for an important aspect of
brain connectivity. To circumvent this issue, Allen and colleagues (Allen
et al., 2012a) suggested the use of a TSW method. Here, the sliding
window (assumed to have width ¼ 22 TRs) is convolved with a Gaussian
kernel (σ ¼ 3 TRs). This allows points to gradually enter and exit the
window as it moves across time. It should be noted that t is defined to be
the middle of the subsequent window, thus giving equal weight to future
and past values.

Thus, both SW- and TSW-derived correlations can be seen as special
cases of the following formula:

bρt ¼
PT

s¼1wts

�
y1;s � bμ1;s

��
y2;s � bμ2;s

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�PT
s¼1wts

�
y1;s � bμ1;s

�2��Pt
s¼1wts

�
y2;s � bμ1;s

�2�r (2)

where wts is the weight when considering the contribution of point s in
calculating the dynamic correlation for index t (at clock time t� TR from
the start of the run). For the SWmethod, wts ¼ 1 for t � w� 1 � s � t � 1
and wts ¼ 0 otherwise. In general, however, the weights could be deter-
mined by any kernel distribution (Wand and Jones, 1994).

The window-length parameter needs to be carefully chosen to avoid
introducing spurious fluctuations (Shakil et al., 2016). For the Kirby data,
we used a window length of 30 TRs, which is the suggested optimal
window-length for rs-fMRI data collected using a standard EPI sequence
with a sampling frequency of 2 s (Leonardi and Van De Ville, 2015). For
the HCP data, we investigated sliding window lengths of 15, 30, 45, 60,
75, 90, 105, and 120 TRs because it was unclear how the increased
sampling frequency used to collect the HCP data would influence what is
considered the optimal window length. However, we only show results
for 30, 60, and 120 TRs (hereon referred to as SW30, SW60 and SW120,
respectively) due to the consistency of the results. These three window
lengths allowed us to compare the reliability of dynamic FC methods
using a window consisting of a similar number of volumes as the Kirby
data (SW30; � 22 s), a window covering a similar amount of time
(SW120; � 86 s), and an intermediate window length (SW60; � 43 s).
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2.3.2. DCC method
The DCC model (Engle, 2002) for estimating conditional variances

and correlations has become increasingly popular in the finance litera-
ture over the past decade. Before introducing DCC, we must first discuss
generalized autoregressive conditional heteroscedastic (GARCH) pro-
cesses (Engle, 1982; Bollerslev, 1986), which are often used to model
volatility in univariate time series. They provide flexible models for the
variance in much the same manner that commonly used time series
models, such as Autoregressive (AR) and Autoregressive Moving Average
(ARMA), model the mean. GARCH models express the conditional vari-
ance of a single time series at time t as a linear combination of past values
of the conditional variance and of the squared process itself. To illustrate,
let us assume that we are observing a univariate process

yt ¼ σtεt (3)

where εt is a Nð0; 1Þ random variable and σt represents the time-varying
conditional variance termwe seek to model. In a GARCH(1,1) process the
conditional variance is expressed as

σ2t ¼ ωþ αy2t�1 þ βσ2t�1 (4)

where ω>0, α; β � 0 and αþ β<1. Here the term α controls the impact
of past values of the time series on the variance and β controls the impact
of past values of the conditional variance on its present value.

While many multivariate GARCH models can be used to estimate
dynamic correlations, it has been shown that the DCCmodel outperforms
the rest (Engle, 2002). To illustrate the DCC method, assume yt is a
bivariate mean zero time series with conditional covariance matrix Σt .
The first order form of DCC can be expressed as follows:

σ2i;t ¼ ωi þ αiy2i;t�1 þ βiσ
2
i;t�1 for i ¼ 1; 2 (5)

Dt ¼ diag
�
σ1;t; σ2;t

�
(6)

εt ¼ D�1
t yt (7)

Qt ¼ ð1� θ1 � θ2ÞQþ θ1εt�1ε
0
t�1 þ θ2Qt�1 (8)

Rt ¼ diagfQtg�1=2QtdiagfQtg�1=2 (9)

Σt ¼ DtRtDt (10)

The DCC algorithm consists of two steps. In the first step (Eqs.
(5)–(7)), univariate GARCH(1,1) models are fit (Eq. (5)) to each of the
two univariate time series that make up yt , and used to compute stan-
dardized residuals (Eq. (7)). In the second step (Eqs. (8)–(10)), an
exponentially weighted moving average (EWMA) window is applied to
the standardized residuals to compute a non-normalized version of the
time-varying correlation matrix Rt (Eq. (8)). Here Q represents the un-
conditional covariance matrix of εt , which is estimated as:

Q ¼ 1
T

X
t¼1

T

εtε
T
t (11)

and ðθ1; θ2Þ are non-negative scalars satisfying 0< θ1 þ θ2 <1. Eq. (9) is
simply a rescaling step to ensure a proper correlation matrix is created,
while Eq. (10) computes the time-varying covariance matrix.

In contrast to the standard implementation of SW and TSW methods,
where observations n-steps forward in time are given the same weight as
observations n-steps backwards in time, the DCC estimates the condi-
tional correlation. Specifically, the current estimate of conditional cor-
relation is updated using a linear combination of past estimates of the
conditional correlation and current observations. In this respect, the
model shares similarities with the time series models commonly used to
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describe fMRI noise, such as the AR and ARMA models (Purdon and
Weisskoff, 1998), where the current noise estimate is influenced by its
past values, not its future values. In resting state experiments the exact
timing of the dynamic correlation is typically not meaningful in itself.
Therefore in this setting, the manner in which the window is defined is
unimportant and will simply result in a time shift of half the window
length size. However, we still believe that the conditional correlation
should be used because it provides a more suitable estimate of the cor-
relation at a specific time point, which can be critical particularly if it is
important to link the dynamic correlation to the timing of a specific task
or emotion.

The model parameters ðω1; α1; β1;ω2; α2; β2; θ1; θ2Þ can be estimated
using a two-stage approach. In the first stage, time-varying variances are
estimated for each time series. In the second stage, the standardized re-
siduals are used to estimate the dynamic correlations fRtg. This two-
stage approach has been shown to provide estimates that are consistent
and asymptotically normal with a variance that can be computed using
the generalized method of moments approach (Engle and Sheppard,
2001; Engle, 2002).

The description above assumes a bivariate time series. However, in
practice yt will often be N-variate with N >2. There are two ways to deal
with such data. First, it is possible to fit an N-variate version of DCC. A
second option is to perform a “massive bi-variate analysis” where the
bivariate connection between each pair of time courses is fit separately.
We opted for the latter approach, as it provides increased flexibility (i.e.,
more variable parameters) at the cost of increased computation time.
Also note that like AR-processes, DCC can be defined to incorporate
longer lags. However, in this work we limit ourselves to the first
order variant.

2.4. Summarizing dynamic functional connectivity

As previously mentioned, estimating dynamic FC initially increases
the number of observations to consider. To illustrate, suppose we have
data from d regions measured at T time points, for a total of d� T data
points. After computing dynamic correlations, the initial output consists
of T separate d� d correlation matrices that together represent time
varying correlations. However, as each matrix is symmetric, there are
unique observations only in the lower triangular portion of the matrix,
and our final output consists of a total of dðd� 1Þ=2� T data points.
Nonetheless, rather than providing data reduction, the analysis increases
the total number of available data points. For this reason, there is a need
to identify ways to meaningfully and reliably summarize this
information.

2.4.1. Mean and variance of dynamic functional connectivity
We explored two basic summary statistics of pairwise dynamic FC: the

dynamic FC mean and variance. The mean is presumed to give roughly
equivalent information as the standard sample correlation coefficient,
while the variance can be used to more directly assess the dynamics of
FC. If an edge is involved in frequent state-changes (i.e., exhibits greater
FC dynamics), it should exhibit consistently higher variation in correla-
tion strength across time when compared to edges whose FC remains
more static throughout an experimental run. Hence, we propose that the
degree of variability should reasonably be included in any summary of
dynamic FC.

2.4.2. Brain states
Another emerging method for summarizing dynamic FC is the clas-

sification of brain states, or recurring whole-brain patterns of FC that
appear repeatedly across time and subjects (Calhoun et al., 2014).
Following the method of Allen and colleagues (Allen et al., 2012a), we
used k-means clustering to estimate recurring brain states across subjects,
separately for each run within a session. We then compared the results
across runs and sessions to assess reliability. First, we reorganized the
lower triangular portion of each subject's d� d� T dynamic correlation
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data into a matrix with dimensions ðdðd� 1Þ=2Þ � T, where d is the
number of nodes and T is the number of time points. Then we concate-
nated the data from all subjects into a matrix with dimensions
ðdðd� 1Þ=2Þ and ðT � NÞ, where N is the number of subjects. Finally, we
applied k-means clustering, where each of the resulting cluster centroids
represented a recurring brain state.

The number of clusters was chosen based on computing the within-
group sum of squares for each candidate number of clusters k ¼
1; ::::10 and picking the ‘elbow’ in the plot (the point at which the slope of
the curve leveled off) (Everitt et al., 2001). K-means clustering was
repeated 50 times, using random initialization of centroid positions, in
order to increase the chance of escaping local minima. Additional sum-
mary measures, such as the amount of time each subject spends in each
state (i.e., dwell time) and the number of transitions from one brain state
to another (i.e., number of change points), were computed and assessed
for reliability across runs and sessions.
2.5. Evaluating the reliability of dynamic functional connectivity methods

2.5.1. Mean and variance of dynamic functional connectivity
The primary goal of this work was to investigate the test-retest reli-

ability of dynamic FC summary statistics computed using three different
estimation methods: SW, TSW, and DCC. We assessed the reliability of
basic summary statistics (dynamic FC mean and variance) using both the
intra-class correlation coefficient (ICC) (Shrout and Fleiss, 1979) and the
image intra-class correlation (I2C2) (Shou et al., 2013), which is a
generalization of the ICC to images. Specifically, we used ICC to assess
the reliability of individual elements (i.e., edges) of mean and variance
matrices, and I2C2 to assess the omnibus reliability of the mean and
variance of dynamic FC across the brain. The omnibus measure of reli-
ability was computed to provide a single value that indicates the degree
of reliability across the entire brain.

The ICC is defined as follows:

ICC ¼ σ2X
σ2X þ σ2U

¼ σ2W � σ2U
σ2W

¼ 1� σ2U
σ2W

; (12)

where σ2U denotes the within-subject variance, σ2X the between-subject
variance, and σ2W ¼ σ2X þ σ2U the variance of the observed data. To
interpret the results, we use the conventions from Cicchetti (1994),
where an ICC-score less than 0.40 is poor; between 0.40 and 0.59 is fair;
between 0.60 and 0.74 is good; and between 0.75 and 1.00 is excellent.

Based on the classical image measurement error (CIME) (Carroll
et al., 2006), the I2C2 coefficient can be defined as follows:

I2C2 ¼ trðKXÞ
trðKWÞ ¼ 1� trðKUÞ

trðKWÞ; (13)

where KX is the between-subject covariance, KU is the covariance of the
replication error, and KW ¼ KX þ KU is the covariance of the observed
data. Using method of moments estimators, calculating I2C2 is both
quick and scalable. In theory, both the ICC and I2C2 produce values
between 0 and 1, where 0 indicates exact independence of the mea-
surements and 1 indicates perfect reliability. However, due to themanner
in which they are estimated, both of these measures could potentially
take negative values, which are interpreted as indicating low reliability.
We calculated I2C2 and ICC for the summary measures described above
across Kirby sessions 1 and 2 and across HCP sessions 1A, 1B, 2A, and 2B.

2.5.2. Brain states
Brain states were matched across runs, sessions, and dynamic FC

methods by maximizing their spatial correlation. After matching, we
evaluated the reliability of brain states derived from each estimation
method by calculating the spatial correlation of corresponding brain
states across runs and sessions for each method. We also used the ICC to
quantify the inter-run reliability of the estimated dwell time and number



Table 1
Summary of the ICC results for the Kirby data. For each method (SW, TSW, DCC, and static
correlation), and statistic (mean or variance) we show the proportion of edges whose
reliability falls in the poor, fair, good, and excellent range. We repeat this for all edges, as
well as for only edges between two signal nodes. Note the static correlation consists of a
single metric that is comparable to the mean of the other methods.

Method Statistic Edges Poor Fair Good Excellent

SW Mean All 0.2200 0.3900 0.3495 0.0405
Mean S-S 0.2476 0.4952 0.2429 0.0143
Var All 0.8084 0.1417 0.0445 0.0054
Var S-S 0.8714 0.1048 0.0143 0.0095

TSW Mean All 0.2389 0.3981 0.3293 0.0337
Mean S-S 0.2762 0.4952 0.2238 0.0048
Var All 0.7949 0.1619 0.0391 0.0040
Var S-S 0.8476 0.1333 0.0143 0.0048

DCC Mean All 0.2645 0.3914 0.3104 0.0337
Mean S-S 0.3476 0.4381 0.2095 0.0048
Var All 0.4345 0.2942 0.2159 0.0553
Var S-S 0.2190 0.4190 0.3381 0.0238

Static All 0.2024 0.4116 0.3401 0.0459
S-S 0.2095 0.5286 0.2524 0.0095
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of change points for each estimation method.

3. Results

3.1. Mean and variance of dynamic functional connectivity

3.1.1. Kirby data
We first assessed the reliability of the mean and variance of estimated

dynamic correlations by applying SW, TSW and DCC methods to the
Kirby data.

3.1.1.1. The reliability of dynamic correlation means was highly consistent
across all estimation methods. We computed the I2C2 score for the mean
of dynamic correlations across all pairs of components, which produced
an omnibus reliability measure across the brain. As can be seen by the
overlapping confidence intervals presented in the left panel of Fig. 1A,
the I2C2 of dynamic correlation means was similar across all estimation
methods (95% confidence intervals (CIs) for SW, TSW and DCC methods
were ½0:51;0:65�, ½0:50; 0:64�, and ½0:51; 0:62� respectively). For com-
parison, the 95% CI for the static correlation was ½0:52;0:66�.

To investigate how the reliability of dynamic correlation means var-
ied across the brain, we additionally computed the ICC for the mean of
dynamic correlations between each pair of components (i.e., each edge)
across participants. Fig. 1B illustrates the ICC matrices for the correlation
means between component pairs for all three estimation methods.
Fig. 1. Reliability of dynamic correlation means and variances from the Kirby data. A) Om
edges, for sliding windows (SW), tapered sliding windows (TSW) and dynamic conditional corre
I2C2 values across components are represented by blue dots, and the 95% confidence interval
measured using the intra-class correlation (ICC). C) Edge-wise reliability of dynamic correlation
across estimation methods using both omnibus and edge-wise reliability measures. In contrast,
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Consistent with the omnibus I2C2 findings, ICC matrices for the corre-
lation means between component pairs show similar ICC values and
patterns across all estimation methods. For all of the methods, the ma-
jority of edges fall in the fair-to-good range; see Table 1.
nibus reliability of dynamic correlation means and variances across all component pairs, or
lations (DCC) methods, as measured by the image intra-class correlation (I2C2). The mean
(CI) is represented by red bars. B) Edge-wise reliability of dynamic correlation means as
variances as measured using the ICC. Dynamic correlation means were similarly reliable
DCC-derived variances were more reliable than SW- and TSW-derived variances.
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3.1.1.2. Variances of dynamic correlations estimated using the DCC method
displayed the highest reliability. We computed the I2C2 score for the
variance of dynamic correlations across all pairs of components, which
produced an omnibus reliability measure across the brain. In contrast to
that of the dynamic correlation means, the I2C2 of dynamic correlation
variances differed substantially across the estimation methods. As illus-
trated in the right panel of Fig. 1A, the variance of DCC-estimated dy-
namic correlations was significantly more reliable across the brain (95%
CI: ½0:43; 0:63�) than the variance of dynamic correlations estimated
using the SW (95% CI: ½0:17;0:32�) and the TSW methods (95%
CI: ½0:18;0:29�).

Similarly, as shown in Fig. 1C, the ICC matrix for the variance of DCC-
estimated dynamic correlations is distinct from the those for the corre-
lation variances estimated using the SW and TSW methods. Specifically,
as seen in Table 1, a majority of the DCC-estimated edge variances fall in
the fair-to-excellent range. In contrast, roughly 80% of the SW- and TSW-
estimated edges fall in the poor range.

3.1.1.3. Reliability of edges connecting signal components were higher for
DCC-estimated FC measures. While the variances of dynamic correlations
estimated using the DCCmethod displayed the highest overall reliability,
it was also observed that certain edges still displayed low ICC values
(Fig. 1C, right panel). Such observed variability in the reliability across
edges for dynamic correlation variances led us to further investigate the
relationship between dynamic correlation variances and the degree of
reliability as measured using ICC. We therefore plotted the dynamic
correlation variances for each edge for session 1 against the ICC of the
Fig. 2. Comparison of dynamic functional connectivity involving signal and noise compo
connectivity (FC) of each edge and reliability of that variance estimated using SW, TSW, and DC
edge. For both A and B, each point represents a single edge, where red dots indicate edges comp
component. Compared to dynamic correlation variances derived using the SW and TSW metho
shrink more towards zero, thus creating greater separation between signal-signal edges and all o
between signal components increased as the absolute value of the dynamic correlation means
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dynamic correlation variance for that edge estimated using the SW, TSW
and DCC methods (Fig. 2A). In this figure, each point represents a single
edge. Specifically, the red dots indicate edges between two signal com-
ponents (identified through matching with the Allen RSNs), while blue
dots represent edges between either two noise components or between a
noise and a signal component. Interestingly, Fig. 2A shows that for all
three estimation methods, the edges between two signal components
display higher variance as compared to edges involving at least one noise
component. Strikingly, the degree of this separation between the signal-
signal edges and the signal-noise/noise-noise edges was greatest for the
DCCmethod, mainly because the dynamic correlation variances for edges
involving a non-signal component appeared to shrink toward zero using
the DCCmethod. We also related the dynamic correlationmeans with the
correlation variances of each edge. We found that the correlation vari-
ances between the signal-signal edges increased as the absolute value of
the correlation means decreased for all estimation methods (Fig. 2B).
Similar to our findings describing the relationship between dynamic
correlation variances and reliability of each edge (ICC), the degree of
separation between signal-signal edges and edges involving at least one
noise component was greatest for the DCC method. When focusing solely
on signal-signal edges, according to Table 1, roughly 80% of DCC edges
fall in fair-to-excellent range. In contrast, for SW and TSW roughly 85%
of edges fall in the poor range.

We further investigated which functional edges were reliably more
variable by visualizing edge variances that were averaged across Kirby
subjects for each session. Fig. 3A–C shows the SW-, TSW-, and DCC-
estimated correlation variances of each edge and session, with
nents from the Kirby data. A) The relationship between variance of dynamic functional
C methods. B) The relationship between dynamic correlation means and variances for each
osed of two signal components and blue dots indicate edges that contain at least one noise
ds, DCC-derived correlation variances for edges involving a noise component appears to
ther edges. Additionally, for all estimation methods, the variances of dynamic correlations
between signal components decreased.



Fig. 3. Edge variances averaged across subjects for each Kirby session and method. The variances of A) SW-, B) TSW-, and C) DCC-derived dynamic correlations for each edge
averaged over all 20 subjects for each session. Note that dynamic FC variances are higher for signal-signal edges than for edges involving at least one noise component for all methods. D)
DCC-derived dynamic FC variance of signal-signal edges. The functional label assigned to each signal node is indicated using the color code at the bottom right of the figure. [SC:
subcortical (mint green); Aud: auditory (aqua); SM: somatomotor (orange); Vis: visual (pink); CC: cognitive control (olive green); DMN: default mode network (grey); Cb: cerebellum
(blue); Noise: light purple]. Within both sessions, time-dependent edges between Vis components and both CC and DMN components appeared to be particularly variable (variance values
above 0.12). In contrast, edges involving the cerebellum (blue) and sub-cortical structures (light green) showed very little volatility (variance values below 0.08).
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components sorted according to their classification of signal or noise.
Again, we see that the separation between signal-signal edges and edges
including at least one noise component were enhanced using the DCC
method, as compared to SW and TSW methods. Fig. 3D focuses on DCC-
estimated correlation variances for signal-signal edges only, with com-
ponents sorted according to their assignment to one of seven functional
domains based on the Allen labels. Within both sessions, time-dependent
edges between visual components (color-coded as pink) and both
cognitive control (olive green) and default mode (grey) components
appeared to be particularly variable, with variance values above 0.12. In
contrast, edges involving the cerebellum (blue) and subcortical structures
(light green) showed very little volatility, with variance values
162
below 0.08.

3.1.2. HCP data
The results for the Kirby and HCP data sets were highly consistent.

One important difference between the Kirby and HCP data sets is the
higher temporal sampling frequency with which the HCP data were
collected. Due to the cutting-edge nature of HCP data acquisition and
processing approaches, little information exists on how such high sam-
pling frequencies impact the optimal window length for SW methods.
Thus, we compared the reliability of dynamic correlation means and
variances estimated using the SW method with varying window lengths
(30, 60, and 120 TRs are presented here, though we fit lengths ranging



Table 2
Summary of the ICC results for the HCP data. For each method (SW. TSW, DCC, and static
correlation), and statistic (mean or variance) we show the proportion of edges whose
reliability falls in the poor, fair, good, and excellent range. We repeat this for all edges, as
well as for only edges between two signal nodes. Note the static correlation consists of a
single metric that is comparable to the mean of the other methods.

Method Statistic Edges Poor Fair Good Excellent

SW30 Mean All 0.2286 0.7388 0.0327 0
Mean S-S 0.1744 0.7987 0.0269 0
Var All 0.6857 0.3135 0.0008 0
Var S-S 0.6641 0.3346 0.0013 0

SW60 Mean All 0.2465 0.7249 0.0286 0
Mean S-S 0.1987 0.7782 0.0231 0
Var All 0.9935 0.0065 0 0
Var S-S 0.9910 0.0090 0 0

SW120 Mean All 0.2784 0.6939 0.0278 0
Mean S-S 0.2308 0.7462 0.0231 0
Var All 1 0 0 0
Var S-S 1 0 0 0

DCC Mean All 0.2776 0.6971 0.0253 0
Mean S-S 0.2231 0.7564 0.0205 0
Var All 0.2416 0.7510 0.0073 0
Var S-S 0.1756 0.8167 0.0077 0

Static All 0.2767 0.6955 0.0278 0
S-S 0.2282 0.7487 0.0231 0
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from 15 to 120 TRs), as well as those estimated using the DCC method.
Due to the almost identical reliability results observed between the SW
and TSW methods, the results for the TSW-method are not presented.

3.1.2.1. The reliability of dynamic correlation means was highly consistent
across all estimation methods. Our omnibus reliability findings for the
HCP data were highly consistent with those observed for the Kirby data.
As can be seen in the left panel of Fig. 4A, the I2C2 for dynamic corre-
lation means was similar across all methods, where 95% CIs for the
SW30, SW60, SW120, and DCC methods were ½0:45;0:48�, ½0:45;0:48�,
½0:44;047�, and ½0:44;0:47� respectively. For comparison purposes, the
95% CI for the static correlation was ½0:454;0:483�.

To investigate how the reliability of dynamic correlation means var-
ied across the brain, we additionally computed the ICC for the mean of
dynamic correlations between each pair of components across partici-
pants. Consistent with the omnibus I2C2 findings in Fig. 4A, we observed
that ICC matrices for the mean correlation between component pairs
show similar patterns of reliability across edges, regardless of the method
used to estimate dynamic correlations (Fig. 4B). Additionally, most edges
show a similar level of reliability, with the exception of edges involving
components 42 and 49. The mean dynamic correlations for edges
involving component 42 were more reliable than most edges, while those
for edges involving component 49 were less reliable than most. Based on
the Allen labels these components were classified as cerebellum and
noise, respectively. The average ICC for SW30, SW60, SW120, and DCC
Fig. 4. Reliability of dynamic correlation means and variances from the HCP data. A) Om
obtained using SW methods with varying window lengths of 30, 60, and 120 TRs (SW30, SW
I2C2; the mean I2C2 values across components for each method are represented by blue dots, an
means as measured using the ICC. C) Edge-wise reliability of dynamic correlation variances as m
methods using both omnibus and edge-wise reliability measures. In contrast, DCC-derived vari
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derived edge means were 0.45 (sd: 0.09), 0.44 (sd: 0.09), 0.44 (sd: 0.09),
and 0.43 (sd:0.09) respectively. According to Table 2, for all methods
nibus reliability of dynamic correlation means and variances across all components pairs
60, and SW120 respectively) and the DCC method. Omnibus reliability is measured using
d the 95% CIs are represented by red bars. B) Edge-wise reliability of dynamic correlation
easured using the ICC. Dynamic correlation means were similarly reliable across estimation
ances were more reliable than those derived using the SW methods.
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roughly 70� 75% of all edges fall in the fair-to-good range.

3.1.2.2. Variances of dynamic correlations estimated using the DCC method
displayed the highest reliability. In contrast to that of the dynamic corre-
lation means, the I2C2 of dynamic correlation variances differed sub-
stantially among estimation methods. As illustrated in the right panel of
Fig. 4A, the variance of dynamic correlations estimated using the DCC
method was significantly more reliable (95% CI: ½:44; :55�) than the SW-
derived dynamic correlation variances, which decayed as the window
length increased (95% CIs: ½0:25;0:30�, ½0:23;0:27�, and ½0:16; 0:19� for
SW30, SW60, and SW120, respectively).

Similarly, as shown in Fig. 4C, the ICC matrix for DCC-derived edge
variances were visually distinct from the ICC matrices for SW-derived
edge variances. Overall, for DCC-estimated edge variances 75% of all
ICC values fall in the fair range. In contrast, for SW30 70% were in the
poor range, while for SW60 and SW120 almost all values were in the poor
range. The average ICC for DCC-estimated edge variance was 0.43
(sd:0.07), compared to 0.37 (sd: 0.07) for SW30, 0.27 (sd: 0.06) for
SW60, and 0.17 (sd: 0.04) for SW120. Additionally, the inverse rela-
tionship between sliding window length and reliability of dynamic cor-
relation variance appears to be fairly consistent across the brain, as is
apparent from the gradual darkening of the three ICC matrices for SW-
estimated variances moving from left to right in Fig. 4C.

3.1.2.3. Reliability of edges connecting signal components were higher for
DCC-estimated FC measures. To further probe edge variance reliability
Fig. 5. Comparison of the dynamic correlation means and variances of each edge from th
of each edge and reliability of that variance estimated using SW30, SW60, SW120, and DCC met
For both A and B, each point represents a single edge, where red dots indicate edges compose
component. Compared to dynamic correlation variances derived using the SW methods, DCC-de
towards zero. In addition, for all estimation methods, the variances of dynamic correlations bet
between signal components decreased.
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patterns in the HCP data, we plotted the dynamic correlation variance for
each edge averaged across all sessions against the ICC of the dynamic
correlation variance for that edge using the SW30, SW60, SW120, and
DCCmethods (Fig. 5A). In this figure, each point represents a single edge.
Red dots indicate edges between two signal components (identified
through matching with the Allen RSNs), while blue dots represent edges
between either two noise components or between a noise and a signal
component. Similar to the Kirby data findings, dynamic correlation
variances for signal-noise/noise-noise edges appear to shrink more to-
wards zero when using the DCC method compared to the SW methods.
Notably, compared to the Kirby data there is a higher presence of blue
dots embedded in the cluster of red signal-signal edges. This may indicate
that we were overly aggressive in labeling components as noise. In
general, the percent variance explained by the Allen RSNs was lower for
HCP components compared to Kirby components, which may be due to
spatial discrepancies between the HCP greyordinate data mapped back
into volume space and the Allen components.

Fig. 5B shows the mean dynamic correlation plotted against the
variance of each edge. In these plots, each point represents one edge and
different colors are used to discriminate between signal-signal and signal-
noise/noise-noise edges. Similar to the Kirby data, across all estimation
methods, the dynamic correlation variances decrease as the absolute
value of the dynamic correlation means increase.

We further investigated which functional edges were reliably more
variable by visualizing DCC-derived edge variances averaged across
subjects for Session 1A, 1B, 2A, and 2B separately, with components
e HCP data. A) The relationship between variance of dynamic functional connectivity (FC)
hods. B) The relationship between dynamic correlation means and variances for each edge.
d of two signal components and blue dots indicate edges that contain at least one noise
rived correlation variances for edges involving a noise component appears to shrink more
ween signal components increased as the absolute value of the dynamic correlation means



Fig. 6. DCC-derived edge variances averaged across all subjects in each of the four runs from HCP data. HCP data was collected over two visits that occurred on separate days, with
two runs collected during each visit. Across sessions, phase encoding directions for the two runs were alternated between right-to-left (RL) and left-to-right (LR) directions. Sessions 1A and
2B indicate runs collected using the RL phase encoding direction, while sessions 1B and 2A indicate runs collected using the LR direction. The functional label assigned to each signal node
is indicated using the color code at the bottom of the figure.
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sorted by their classification based on the Allen RSNs (Fig. 6). Again, the
results show a remarkable consistency in edge variances across runs. In
particular, note the heightened variation between visual, cognitive con-
trol, and DMN components, which is consistent with the edge variance
patterns observed in the Kirby data. Despite the FIX de-noising correction
performed on the HCP data that intended to remove nuisance signals, our
Allen RSN matching procedure labeled some of the HCP components as
noise (purple components in Fig. 6). However, note our discussion above
regarding the fact that some of these components are potentially mis-
labeled. The average variances for edges involving an HCP component
labeled as noise was .01 (sd: .01), while the average variance for signal
edges was .03 (sd: .01).
Table 3
Between-session Pearson correlations of the brain states estimated from the Kirby data.

DCC SW TSW

State 1 0.95 0.94 0.95
State 2 0.97 0.89 0.90
3.2. Brain states

3.2.1. Kirby data
Next, we examined the reliability of brain state-derived measures

using Kirby signal components.
Fig. 7. Brain states from the Kirby data. Two brain states were identified by k-means cluster
Brain states were highly consistent across all estimation methods. The functional label assigne
subcortical (mint green); Aud: auditory (aqua); SM: somatomotor (orange); Vis: visual (pin
bellum (blue)].
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3.2.1.1. Two recurring whole-brain patterns were identified as brain states in
the Kirby data. Brain state clustering was performed separately for each
rs-fMRI session and estimation method, resulting in six independent
analyses (3 methods � 2 sessions). The optimal number of brain states
was estimated to be two. Fig. 7 illustrates the two brain states for each
session derived from the SW, TSW, and DCC methods. Using the
between-session spatial correlation as a measure of reliability, we found
that brain states 1 and 2 were highly reliable across sessions regardless of
the dynamic connectivity method used (Table 3). Across sessions and
estimation methods, State 2 was characterized by stronger correlations
(both positive and negative) relative to State 1. Moderate to strong
negative correlations between sensory systems, namely auditory (aqua),
ing the A) SW, B) TSW, and C) DCC output of signal nodes for sessions 1 and 2 separately.
d to each signal node is indicated using the color code at the bottom of the figure. [SC:
k); CC: cognitive control (olive green); DMN: default mode network (grey); Cb: cere-



Fig. 8. Brain-state-derived summary measures for each session and method from the Kirby data. The left column contains box plots of the average time spent in each brain state
(dwell time) in TRs for each session estimated using the A) SW, B) TSW, and C) DCC methods. The right column contains box plots of the number of transitions (change points) across
subjects. On average, subjects spent more time in State 1 than State 2 across sessions and methods.
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somatomotor (orange), and visual (pink) components, were present in
State 2 but were reduced in State 1. Similarly, negative correlations
within the DMN (grey) components were present in State 2 and were
reduced in State 1.

3.2.1.2. Across all estimation methods, reliability of the brain state-derived
measures was low. Fig. 8 shows box plots of the average time spent in
each brain state (dwell time; left column) and the number of transitions
(change points; right column) across subjects for each estimation method
and session. In both sessions, regardless of the estimation method used to
derive dynamic correlations, Kirby subjects on average spent the most
time in State 1. As can be seen from the box plots, there was a great deal
of between-subject variability with regards to the amount of time spent in
each state; however, state dwell time for each subject was correlated
across runs. Table 4 lists the reliability of estimated dwell times and the
number of change points derived from each estimation method as
measured by the ICC. DCC-derived dwell times were the most reliable,
Table 4
Reliability of brain state dwell times and of the number of change points estimated from the
Kirby data.

DCC ICC SW ICC TSW ICC

State 1 Dwell Time 0.61 0.56 0.53
State 2 Dwell Time 0.61 0.56 0.53
Number of Change Points 0.04 0.41 0.39
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and fall in the good range. Similarly, there was a great deal of between-
subject variability in the estimated number of change points for all
estimation methods (Fig. 8; right column). On average across subjects,
state changes occurred more frequently when estimated from DCC-
derived FC than when estimated from SW- and TSW-derived FC for
both sessions. Generally, the reliability of state-change frequency esti-
mates was fair for SW and TSW and poor for DCC.

3.2.2. HCP data
The results for the Kirby and HCP data sets were somewhat consistent.

3.2.2.1. Three recurring whole-brain patterns were identified as brain states
in the HCP data. Brain state clustering was performed separately for each
dynamic correlation estimation method (SW30, SW60, SW120, and DCC)
and rs-fMRI run, resulting in 16 independent analyses (4 estimation
methods � 4 runs). The optimal number of brain states was estimated to
be three. Brain states were matched across runs and dynamic FC methods
by maximizing their spatial correlation. Figs. 9–12 illustrate the three
brain states determined by applying k-means clustering to the results
derived from the SW30, SW60, SW120, and DCC methods respectively.

Consistent with the Kirby brain states, there was a great deal of
similarity in brain states across the four HCP sessions. States 1, 2 and 3 all
showed moderate to high correlations among signal components repre-
senting sensory systems: visual (Vis), somatomotor (SM), and auditory
(Aud) components (Figs. 9–12). In states 1 and 3, a set of components in
the cerebellum (Cb, light blue) showed negative correlations with visual,



Fig. 9. SW30-derived brain states averaged across subjects for each of the four HCP sessions. Brain states were identified using the cluster centers from k-means clustering. The
functional label assigned to each signal node is indicated using the color code located at the bottom of the figure.
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somatomotor, and auditory components. These negative correlations
were not observed in State 2. The HCP states were similar to those ob-
tained from the Kirby data, particularly with regard to the second state in
both cases, though it is important to note that the number and placement
of the components in each HCP RSN do not map directly onto one
another exactly. Using the between-run spatial correlation for each brain
state as a measure of its reliability, we found that brain states 1 and 2
were similarly reliable regardless of the dynamic connectivity method
used (Table 5). The only clear difference in inter-run similarity was with
regard to State 3. The third brain state was in general slightly less reliable
167
across runs, with the exception of SW120 (0.66, 0.71, and 0.95 for SW30,
SW60, and SW120, and r ¼ 0:80 for DCC, respectively).

3.2.2.2. Across all approaches, reliability of the brain state-derived measures
was low. Fig. 13 shows box plots of the dwell time (left) and number of
change points (right) for each estimation method and session. In all four
sessions, regardless of the estimation method used to derive dynamic
correlations, HCP subjects on average spent the most time in State 2,
while the relative dwell time ranking of States 1 and 3 varied with the
estimation method used. There was also a great deal of between-subject



Fig. 10. SW60-derived brain states averaged across subjects for each of the four HCP sessions. Brain states were determined using the cluster centers from k-means clustering. The
functional label assigned to each signal node is indicated using the color code located at the bottom of the figure.

A.S. Choe et al. NeuroImage 158 (2017) 155–175
variability with regard to the amount of time spent in each state, and the
reliability of dwell time estimates varied across states and methods used
to derive them (Table 6). For States 1 and 2, DCC- and SW120-derived
dwell times were more reliable than SW30- and SW60-derived dwell
times; however, DCC-derived State 3 dwell times were less reliable than
SW120-derived dwell times.

As was the case when comparing dynamic FC methods applied to the
Kirby data, more frequent state changes were indicated by DCC-derived
brain states than by the SW methods across all four HCP runs (Fig. 13).
On average, subjects switched states every 136 s (averaging across the
168
four runs) using SW120-derived brain states, every 52 s using SW60-
derived brain states, every 22 s using SW30-brain states, and every
12 s using DCC-derived brain states, as shown in Fig. 13. In other words,
brain state derived measures obtained using the DCC and SW30 methods
displayed more frequent state changes than those obtained using the
SW60 and SW120 methods. The relatively high rate of state changes for
the DCC-derived measures can be attributed almost entirely to the exis-
tence of more frequent transitions when in State 3. Generally, the reli-
ability of state-change frequency estimates was quite low for all of the
methods, as shown in Table 6.



Fig. 11. SW120-derived brain states averaged across subjects for each of the four HCP sessions. Brain states were determined using the cluster centers from k-means clustering. The
functional label assigned to each signal node is indicated using the color code located at the bottom of the figure.
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4. Discussion

Identification of dynamic FC estimation methods and summary
measures that maximize reliability is important to provide accurate
insight into brain function. Here, we compared the reliability of summary
statistics and brain states derived from commonly used non-parametric
estimation methods (SW and TSW) to a model-based method (DCC).
Given the previously demonstrated susceptibility of SW methods to
noise-induced temporal variability in correlations (Lindquist et al.,
2014), we set out to compare the reliability of these methods when
169
applied to two rs-fMRI test-retest data sets with potentially varying levels
of noise: 1) the Kirby data set, which was collected using a typical-length,
standard EPI sequence and then cleaned using established standard
preprocessing procedures; and 2) the HCP data set, which was collected
using a cutting-edge multiband EPI sequence optimized to produce
higher temporal resolution images and was cleaned using more aggres-
sive preprocessing procedures. Consistent with our hypothesis, we found
that the model-based DCC method consistently outperformed the non-
parametric SW and TSW methods, which is in line with findings from
our previous work (Lindquist et al., 2014). Specifically, the DCC method



Fig. 12. DCC-derived brain states averaged across subjects for each of the four HCP runs. Brain states were determined using the cluster centers from k-means clustering. The
functional label assigned to each signal node is indicated using the color code located at the bottom of the figure.
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demonstrated the highest reliability of dynamic FC summary statistics in
both data sets, and was best able to differentiate between signal com-
ponents and noise components based on the variance of the dynamic
Table 5
Average between-session Pearson correlations of the brain states from the HCP data.

DCC SW30 SW60 SW120

State 1 0.98 0.95 0.93 0.97
State 2 0.98 0.98 0.98 0.98
State 3 0.80 0.66 0.71 0.95
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connectivity values. Reliability of the brain state-derived measures,
however, were low across all estimationmethods, with nomethod clearly
outperforming the others.
4.1. Reliability of the mean and variance of dynamic functional
correlations

We found that the mean of dynamic correlations derived from all
estimation methods was equivalently reliable (Fig. 1A–B and 4A-B). This
observation was not surprising, as all methods should result in average



Fig. 13. Brain-state-derived summary measures for each session and method, from HCP data. Box plots of the dwell time in TRs and the number of change points estimated using the
A) SW30, B) SW60, C) SW120, and D) DCC methods.

Table 6
Reliability of dwell times and number of change points for brain states estimated from the
HCP data.

DCC ICC SW30 ICC SW60 ICC SW120 ICC

State 1 Dwell Time 0.31 0.27 0.25 0.34
State 2 Dwell Time 0.51 0.44 0.46 0.58
State 3 Dwell Time 0.26 �0.06 0.01 0.52
Number of Change Points 0.26 0.24 0.21 0.26
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dynamic correlations that roughly correspond to the sample correlation
and thus should be similarly reliable. For all methods, we observed that
the dynamic correlation variances decreased as the absolute value of the
dynamic correlation means increased, which is consistent with recent
work by Thompson and colleagues (Thompson and Fransson, 2015)
(Figs. 2 and 5). While more prominent in the HCP data (Fig. 5), this
pattern was also observed for signal-signal edges in the Kirby data (red
data points in Fig. 2). However, the reliability of dynamic correlation
variance was significantly higher when derived using the DCC method
than when derived from SW and TSW methods. This observation held
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true for both the Kirby data (Fig. 1A and C) and for the HCP data (Fig. 4A
and C). For SW methods, as the window lengths increased, the reliability
of the dynamic correlation variance (Fig. 4A and C), as well as the esti-
mated dynamic correlation variance (Fig. 5), decreased - i.e., SW30
resulted in the largest correlation variance values that weremost reliable,
while SW120 resulted in the smallest correlation variance values that
were least reliable. This increase in the observed dynamic correlation
variance values with decreasing window length is expected, as the SW
methods are more susceptible to noise when smaller window sizes are
used. Similarly, the decrease in reliability with increasing window length
is expected; assuming a constant time series length, the total of number of
samples used to calculate the mean and variance of dynamic FC decreases
as the window length increases. Identifying dynamic FC estimation
methods that maximize the reliability of correlation variance estimates
are particularly important, given that edges between brain regions
involved in larger or frequent state changes should exhibit consistently
higher correlation variation than edges involving brain regions whose
functional connectivity and network membership remain more stable
throughout an experimental session.

Previous studies have found that SW methods are susceptible to noise
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and suboptimal at estimating dynamic FC, both when connectivity
changes are gradual (Lindquist et al., 2014) and when they are abrupt
(Shakil et al., 2016). Performance of the SW method is especially poor
when small window sizes are applied to standard EPI data, as dynamic
changes in connectivity produce spurious correlations when only a small
number of time points are taken into account (Shakil et al., 2016). For all
three estimation methods we explored, the variance of the dynamic
correlations of edges involving two signal components was higher as
compared to the variance of the dynamic correlations of edges involving
at least one noise component (Figs. 2 and 5). This is important, as it may
indicate that neuronally relevant signal fluctuation demonstrate higher
variance. This observation was true for both the Kirby (Fig. 2) and the
HCP (Fig. 5) data sets and is consistent with previous literature (Allen
et al., 2012a). Moreover, the degree of separation between the variability
of signal-signal edges and edges that include at least one noise compo-
nent in the Kirby data was larger for the DCC method than for the SW or
TSW methods; DCC-derived variance of edges involving noise compo-
nents appeared to shrink more toward zero (Fig. 2A). In the HCP data,
similar decreased variability (i.e., the shrinking of dynamic correlation
variance toward zero) was observed in clusters of edges across all three
estimation methods (Fig. 5A), and DCC-derived variance of all edges
were shifted more toward zero compared to the SW methods. Unlike in
the Kirby data, however, the degree of separation between the variability
of signal-signal edges and edges that include at least one noise compo-
nent was not enhanced by the DCC method. This may be due to the fact
that most of the HCP noise-related components were actively removed
using the FIX algorithm (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014).

In terms of maximizing reliability when comparing different window
lengths, the shortest window length (SW30) performed the best out of the
three windows lengths tested for the HCP data and was the most similar
to the DCC (Fig. 4A and C). However, in terms of minimizing the bias in
dynamic correlation variance (shrinking the variance of edges involving
noise components toward zero), the longest window length (SW120)
performed the best and was the most similar to the DCC method (Fig. 5).
These findings provide further evidence that the DCC method is less
susceptible to the temporal variability in correlations induced by noise
(Lindquist et al., 2014), even when applied to data that has been
aggressively cleaned.

Focusing on the variability of dynamic correlations between signal
components, we observed a group of edges that consistently displayed
higher variance than others edges in both the Kirby data (Fig. 3D) and the
HCP data (Fig. 6); namely the edges involving visual, cognitive control,
and default mode regions. Notably, these regions are consistently iden-
tified as functional hubs (Buckner et al., 2009), and are recognized as
some of the most globally connected regions in the brain (Cole et al.,
2010). Connectivity between these brain regions has also been previously
described as highly variable using TSW methods (Allen et al., 2012a),
suggesting that this finding is robust. Interestingly, the DCC-derived
variance estimates for these edges were more reliable than SW- or
TSW-derived variance estimates (Fig. 2), suggesting that the more reli-
able DCC-derived estimates may in turn increase the likelihood of
detecting nuances in dynamic connectivity that might otherwise be
missed by methods more susceptible to noise. Exploring whether the use
of more reliable dynamic FC outcome measures also improves the reli-
ability of related brain-behavior relationships is an important area of
future work.

Finally, there is the issue of long-term test-retest reliability. All of the
Kirby data were acquired within the same day, while different parts of
the HCP data were acquired on different days (two sessions acquired on
each of two days). Although a thorough investigation is outside the scope
of the current manuscript, we do note a decrease in similarity in the re-
sults across days for the HCP data set. For example, the I2C2 score for the
mean of the dynamic correlations across all pairs of components
measured using DCC, which produces an omnibus reliability measure
across the brain, is on average 0.55 when comparing two sessions from
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the same day, while it is on average 0.44 when comparing two sessions
from different days. Similarly, the I2C2 score for the variance of dynamic
correlations across all pairs of components is on average 0.515 when
comparing two sessions from the same day, while it is on average 0.415
when comparing two sessions from different days. Future work is needed
to determine how reliable the dynamic correlation is between sessions
that are further apart in time.

4.2. Reliability of brain states

Our results suggest that the DCC method provides the best estimate
for the correlation variance (Figs. 1 and 4). However, whether that is also
true for the estimation and characterization of brain states is less clear.
Interestingly, the three brain states identified from the HCP data
(Figs. 9–12) follow similar patterns to the most common occurring states
for healthy individuals found in an earlier study probing recurring brain
states conducted by Damaraju and colleagues (Damaraju et al., 2014).
The brain states estimated using the Kirby data (Fig. 7) also follow a
similar pattern, but the negative correlations observed between the
sensory networks (Aud, SM, and Vis networks) are more pronounced,
perhaps due to the smaller number of networks estimated. The observed
similarity of brain states across methods and data sets suggests that the
most robust features of dynamic connectivity will emerge regardless of
the method used to estimate them. It is critical that future research design
studies to probe the functional relevance of these brain states. This can be
achieved by relating these patterns of brain network organization both to
neuronal measurements and to behavioral and cognitive outcomes.

In the Kirby data, DCC-derived brain states were equally or more
reliable than SW- and TSW-derived brain states (Table 3). However, the
two methods that produced the most reliable connection variances in the
HCP data, the DCC and SW30 methods, produced the least reliable State
3, as exhibited by the reduced spatial correlation for State 3 across the
four HCP sessions (Table 5). One possible explanation is that this may be
due to increased sensitivity of these methods to features of the HCP data
acquisition, which varied between runs. The DCC and SW30methods had
high inter-run reliability for State 3 between sessions collected using the
same phase encoding direction (between Sessions 1A and 2B, which were
collected using a left-to-right phase encoding direction, and between
Sessions 1B and 2A, which were collected using a right-to-left phase
encoding direction), but lower reliability across pairs of runs collected
using opposite phase encoding directions. It may be that the DCC and
SW30 methods, which were more reliable in terms of correlation vari-
ances, are able to detect subtle, systematic data acquisition biases that
were introduced to brain states-derived measures that SW60 and SW120
methods cannot.

Regardless of the method used to estimate dynamic connectivity,
metrics derived from the brain states (dwell time and number of change
points) were generally less reliable than the mean and variance of dy-
namic functional connectivity; this was true for both Kirby brain states
(ICC values in Table 4 compared with Fig. 1) and HCP brain states (ICC
values in Table 6 compared with Fig. 4). An important limitation is that
they may be affected by aging and other uncontrolled factors, so addi-
tional research is needed. An important methodological issue that may
have impacted the reliability of brain state metrics is the difficulty
associated with determining the actual number of latent brain states
present in the data. Prior to applying the k-means clustering algorithm to
the dynamic correlation matrices, we had to specify the number of brain
states into which the algorithm should divide the data. Many approaches
have been developed to find an approximate optimal cluster number k.
Here we adopted the popular ‘Elbow Method’ to identify the appropriate
number of states (Tibshirani et al., 2001). This approach is ad hoc, and
there are several more sophisticatedmethods that build statistical models
to formalize the ‘elbow’ heuristic, including the ‘gap statistic’ (Tibshirani
et al., 2001). However, in practice the ‘Elbow Method’ usually achieves
better performance and strikes a balance between computational effi-
ciency and accuracy. Nevertheless, we cannot rule out the possibility that
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the overall lower reliability of brain state metrics was, in part, due to our
choice regarding the number of latent brain states present in the data.

An important alternative possibility is that average brain states,
which are detected reliably with the DCC method and display similar
patterns across both DCC and SW approaches, reflect participant traits
that are relatively stable. Summary metrics such as dwell time and
number of change points, however, may reflect participant states that
meaningfully change both across days and even within a session. These
states could be due to factors such as arousal and attention that may
themselves be unreliable in interesting ways. Future research designed to
probe this possibility is needed.

Finally, it is important to note that throughout we assumed subjects
are in a single state at a given time period. However, recent research
(Leonardi et al., 2014; Miller et al., 2016) has suggested the possibility
that a subject may simultaneously be in multiple overlapping states. In
such a setting, the choice of appropriate summary measure would change
compared to the single-state setting.

4.3. Kirby vs. HCP data sets

We are encouraged by the level of agreement between our results for
these two very different data sets. In general, the confidence intervals for
the reliability estimates of the dynamic correlation means and variances
were smaller for the HCP data set (Fig. 4) compared to the confidence
intervals for the Kirby data set (Fig. 1). This increased confidence in our
estimates of reliability is expected given that the HCP data set includes
significantly more observations than the Kirby data set. At the same time,
however, we are intrigued that despite almost a sixfold increase in the
amount of data collected for each HCP participant compared to the
amount of data collected for each Kirby participant, the reliability of
dynamic correlation means and variances were relatively similar (Figs. 1
and 4) - though the HCP data set did show a significantly lower I2C2
value for the mean dynamic correlation than the Kirby data set. The
observed similarity in reliability is consistent with the results from a
previous study that showed that truncating multi-band data sets (up to
half the original amount of data) did not significantly change the stability
of RSNs, as long as moderate acceleration factors were used (Chen et al.,
2015). It is possible that the amount of data acquired for each Kirby
subject is sufficient to achieve maximum reliability. Alternately, another
possible explanation for the observed similarity in the reliability of the
dynamic FC derived measures between the two data sets is that the
introduction of structured noise by the multi-band image acquisition
scheme reduced the reliability of the dynamic FC measures obtained
using the HCP data. Specifically, while the simultaneous acquisition of
multiple slices significantly increases the temporal resolution of the data,
the multi-band acquisition also introduces strong noise amplification to
the images during the subsequent un-folding of the simultaneously ac-
quired slices during the image reconstruction process (Xu et al., 2013).
The amount of noise amplification increases as the acceleration factor
(i.e., number of slices simultaneously acquired at each TR) increases, and
to minimize the introduction of undesired structured noise and other
image artifacts, use of an acceleration factor larger than eight is generally
not recommended (Smith et al., 2013; Chen et al., 2015; De Martino
et al., 2015). This is important, as the HCP data uses an acceleration
factor of eight, which is at the higher end of the recommended acceler-
ation factor. At this time, however, a thorough analysis of the many
differences between the two data sets and how they interact to impact the
reliability of FC dynamics is beyond the scope of this paper.

4.4. Comparison to reliability studies of static functional connectivity

A number of studies have previously evaluated the reliability of static
FC in resting-state fMRI data. A particular focus has been on determining
the necessary scan length needed to obtain reliable estimates (Van Dijk
et al., 2010; Anderson et al., 2011; Birn et al., 2013). While increased
scan length has consistently been shown to improve reliability, different
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studies have reached widely varying conclusions about the necessary
length required, with recommendations ranging from 5 min (Whitlow
et al., 2011; Liao et al., 2013) to 90 min (Laumann et al., 2015). Studies
have similarly indicated that increasing temporal resolution (Birn et al.,
2013; Zuo et al., 2013; Liao et al., 2013) results in improved reliability. In
our study, we examined data with varying scan duration and temporal
resolution. As mentioned above, these settings had less clear effects on
the reliability of dynamic FC than previously observed for static FC.

In terms of preprocessing, several studies have found that global
signal regression tends to worsen the reliability of static FC (Zuo et al.,
2013; Liao et al., 2013), while nuisance regression tends to improve it
(Zuo et al., 2013). In addition, the use of functional versus anatomical
regions of interest (ROIs) (Anderson et al., 2011) have been shown to
improve reliability. In our study we didn't explicitly study the effects of
these different preprocessing choices, however we did let them guide the
choices we made throughout.

Finally, it is interesting to note that for all methods, the mean of the
dynamic correlation and the static correlation were similarly reliable.

4.5. Considerations for dynamic functional connectivity estimation
methods

The results of our study provide evidence that dynamic features of
functional connectivity can be reliably estimated, and that the model-
based DCC method outperforms its non-parametric counterparts (i.e.,
SW and TSW methods). However, several aspects of the dynamic FC
estimation process exist of which one should be aware when interpreting
results from dynamic FC data. First, it is important to note that the dy-
namic FC estimation methods discussed in this work are descriptive in
nature, and do not involve specific inferential tests or methods. While
this reflects the majority of current dynamic connectivity studies, such
tests are now being introduced into the field. For example, Zalesky et al.
(2014) have developed a univariate test statistic to measure the extent of
time-varying fluctuations in the time-resolved correlation coefficients
between pairs of brain regions. We anticipate significant developments in
this area in coming years. Secondly, it is important to recognize that
model selection procedures were not employed when applying DCC.
These include plots of the auto-correlation or partial correlation func-
tions to determine model order, and diagnostic test to validate the model
assumptions. In addition, although we have shown that the dynamic FC
measures obtained using the model-based DCC method are more reliable
than SW and TSWmethods, we recognize that I2C2 and ICC scores in the
range of .6 indicate that room for improvement remains in the reliability
of DCC-derived dynamic FC measures. It is thus worth exploring varia-
tions or alternatives to the DCC method that might improve upon its
accuracy and reliability.

Finally, it should be noted that there exist alternative approaches in
the literature that may also improve upon sliding-window approaches.
For example, wavelet decompositions effectively use an adaptive win-
dowing approach, like DCC, and may thus also provide improved results
(e.g., Yaesoubi et al., 2017). Likewise, there exist alternative methods for
detecting brain states that use techniques from change point analysis
(e.g., Cribben et al., 2012, 2013; Xu and Lindquist, 2015) that may
similarly improve upon results obtained using k-means clustering.
However, we leave further comparisons for future work.

5. Conclusions

The primary aim of this project was to identify dynamic FC estimation
methods and summary measures that maximize reliability and the utility
of dynamic FC, by comparing the reliability of dynamic FC summary
measures computed using the SW, TSW, and DCC methods. Additionally,
comparison of the estimation methods’ reliability between a data set
acquired using a conventional data acquisition/processing approach and
that acquired using a more cutting-edge approach was enabled by uti-
lizing the Kirby and HCP data sets. The results of our study provide
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evidence that dynamic features of FC can be reliably estimated in both
data sets when the model-based DCC method is used. This is significant,
as there is a clear need in the field for summarymeasures that can be used
to find meaningful individual differences in dynamic FC, and it is the
degree and patterns of the fluctuations of dynamic FC (i.e., the variance)
that may provide the most interesting information. We therefore believe
that utilizing the variance of the dynamic connectivity is a crucial
component in any dynamic FC-derived summary measure. The study also
showed that across all estimation methods, reliability of the brain state-
derived measures are low, indicating that caution should be taken when
analyzing and interpreting dynamic FC summary measures derived from
brain states and that further efforts to develop more reliable approaches
to calculating brain states are necessary.
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